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Abstract

MapReduce, the de facto standard for large scale data-intensive applications, is a remarkable parallel programming
model, allowing for easy parallelization of data intensive computations over many machines in a cloud. As huge
tree data such as XML has achieved the status of the de facto standard for representing structured information, the
situation calls for efficient MapReduce programs treating such a tree data structure in parallel. However, development
of such MapReduce programs has remained a challenge. In this paper, restructuring our previous BSP algorithm
for tree reduction computations, we propose a new MapReduce algorithm that can be used to implement various tree
computations such as XPath queries. Our algorithm is designed to achieve linear speedup even for extreme inputs, and
our experimental result shows that our prototype implementation actually achieves linear speedup even for monadic
trees.
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1. Introduction

MapReduce [1], the de facto standard for large scale data-intensive applications, is a remarkable parallel program-
ming model, allowing for easy parallelization of data intensive computations over many machines in a cloud. It is
used routinely at companies such as Yahoo!, Google, Amazon, and Facebook. Its abstract interface effectively hides
the details of parallelization, data distribution, load balancing, and fault tolerance.

XML has achieved the status of the de facto standard for representing structured information. Depending on
the information an XML tree represents, the shape of the tree may be imbalanced and its size can be quite huge.
This situation calls for an efficient MapReduce program treating such a tree data structure in parallel. However,
development of such MapReduce programs has remained a challenge. The main difficulties here are that deserializing
a huge tree (DOM tree) from the serialized format (XML file) costs very much, and that simple divide-and-conquer
parallelism, such as naive use of MapReduce, suffers from the factor of the height of input trees.

In the previous work [2, 3], we proposed a parallel algorithm on the BSP model [4, 5] for tree reduction com-
putations so-called tree homomorphisms, which covers XML computation such as XPath queries and dynamic pro-
gramming [6, 7, 8]. The algorithm runs tree reductions without deserializing input trees, and achieves linear speedup
independent of the shapes of input trees. Therefore, we can tackle the challenge by importing the BSP algorithm into
MapReduce.
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In this paper, restructuring the BSP algorithm, we propose a MapReduce algorithm for tree reductions, and report
experimental results of our prototype implementation on Hadoop [9, 10], a popular implementation of MapReduce.
The main contributions of this paper are listed as follows.

• We propose a MapReduce algorithm that achieves linear speedup even for extreme inputs, namely, monadic
trees. This is the first MapReduce algorithm that has such nice feature.

• We also give a simplified version of the algorithm, and evaluates them by our prototype implementation on
Hadoop. This is the first comparison of such two algorithms, and the evaluation suggests a hybrid algorithm.

The rest of this paper is organized as follows. Section 2 presents definitions of data structures and computation
on them. Section 3 introduces the BSP algorithm for parallel tree reduction. Section 4 imports the algorithms into
MapReduce, and Section 5 shows experimental results. Section 6 discusses related work, and Section 7 concludes
this paper.

2. Preliminaries

The notation in this paper is reminiscent of Haskell [11]. Function application is denoted by a space and the
argument may be written without brackets, so that f a means f (a) in ordinary notation. Functions are curried: they
always take one argument and return a function or a value, and the function application associates to the left and binds
more strongly than any other operator, so that f a b means ( f a) b and f a⊗ b means ( f a)⊗ b. Function composition
is denoted by ◦, and ( f ◦ g) x = f (g x) according to its definition. Binary operators can be used as functions by
sectioning as follows: a ⊕ b = (a⊕) b = (⊕b) a = (⊕) a b.

Lists are finite sequences of values of the same type. A list is either a singleton, or the concatenation of two other
lists. We write [a] for the singleton list with element a, and xs ++ ys for the concatenation of two lists xs and ys. For
example, the term [1] ++ [2] ++ [3] denotes a list with three elements, often abbreviated as [1, 2, 3].

2.1. Trees and Their Serialized Representation
We treat trees with unbound degree (trees whose nodes can have an arbitrary number of subtrees); Figure 1 shows

an example. A definition of data structure RTree for trees with unbound degree is given as follows.

data RTree α = Node α [RTree α] | Leaf α

Our internal representation is to keep tree-structured data in a serialized manner. The sequence of the middle in Fig-
ure 1 is our internal representation of the example tree. It is a simple abstraction of XML serialization; a combination
of a preorder (for producing the open elements) and a postorder traversal (for producing the close elements after-
wards). We assume well-formedness, with which sequences are guaranteed to be parsed back into trees, and without
loss of information we simplify close elements to be “/”. The figure also depicts their presentation according to the
depth.

2.2. Tree Homomorphism and Extended Distributivity
We use the framework called tree homomorphism [6, 12], which specifies recursive tree reductions h using h′, ⊕,

and associative ⊗ with its unit ι⊗:

h( Node a [t1, . . . , tn] ) = a ⊕ ( h(t1) ⊗ · · · ⊗ h(tn) ) ,
h( Leaf a ) = h′(a) .

For example, consider a computation maxPath to find the maximum of the values each of which is a sum of values
in the nodes from the root to each leaf. This “maximum path sum” computation is a tree homomorphism:

maxPath( Node a [t1, . . . , tn] ) = a + ( maxPath(t1) ↑ · · · ↑ maxPath(tn) ) ,
maxPath( Leaf a ) = id(a) = a .

Here, id is the identity function, and ↑ returns the bigger of two numbers whose unit is −∞. When it is applied to the
example tree in Figure 1, the result should be 17 = 3 + 7 + (−5) + 4 + 5 + 3.
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Figure 1: A rose tree and its serialized representation.

For brevity, we use this simple computation “maximum path sum” as a running example throughout this paper. It
should be noted that our proposed algorithms in this paper are not limited to this example computation.

We can apply parallelization of tree homomorphism over serialized trees based on list homomorphism [13]. This
naive approach, however, may suffer from the factor of tree depths. We need to review an additional property called
extended distributivity [6, 14]. This property is explained, by introducing a new operator 	 defined as (a, b, c) 	 e =

a ⊕ (b ⊗ e ⊗ c), as follows: for any triples (au, bu, cu), (al, bl, cl), and any expression e, there exists a triple (a, b, c)
which satisfies

(au, bu, cu) 	 ( (al, bl, cl) 	 e ) = (a, b, c) 	 e .

Efficient parallel reduction requires these computations as well as ⊗ and ⊕ to be done in constant time. Our running
example satisfies these properties as the following calculation shows.

(au, bu, cu) 	 ( (al, bl, cl) 	 e )
= au + (bu ↑ (al + (bl ↑ e ↑ cl)) ↑ cu)
= (au + al) + ((−al + bu ↑ bl) ↑ e ↑ (cl ↑ −al + cu))
= ( (au + al), (−al + bu ↑ bl), (cl ↑ −al + cu) ) 	 e

For some other examples under these formalizations, see previous work [6, 14].

3. BSP Algorithm for Parallel Tree Reduction

In this section, we briefly review our previous algorithm [2] on the BSP model [4, 5] for parallel computation of
tree homomorphism. In general, a BSP algorithm consists of a sequence of super steps, and a super step consists of a
local computation followed by a global communication synchronized by a global barrier.

Figure 2 shows an illustration of our BSP algorithm demonstrated for the maximum path sum computation for
the example tree in Figure 1. The super steps are explained in the following subsections. Please refer to our previous
work [2] for details.

3.1. First Super Step: Evaluating Local Subtrees to Make Hills and Sharing Their Shape Information
This step applies the given tree homomorphism in parallel to every subtrees within each subsequence of the

serialized input, so that each subsequence is reduced into a possibly small hill.
In the local computation phase, each processor applies the given tree homomorphism to forests in its assigned

subsequence of the serialized input. This process leaves fragments of results forming a hill, because every valley
represents a subtree and thus is reduced into a value. For example, in Figure 2, the process 2 receives the subsequence
of eight elements starting with −3, and the result is singleton value 8 indicated by a round rectangle, because the
subsequence represents a forest of two complete subtrees. Similarly, the processor 3 takes the succeeding subsequence
starting with 2, and builds a hill of height three, in which the left most value −3 is the result of the homomorphism



K. Emoto and H. Imachi / Procedia Computer Science 00 (2012) 1–10 4

Figure 2: Flow of the BSP algorithm demonstrated for the maximum path sum computation.
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applied to the complete subtree represented by the first four elements 2, −5, / and /. Since the other elements in the
subsequence do not form complete trees, their values remain in the resulting hill with a few additional identities −∞.

In the global communication phase, each processor sends the shape of its hill (the pair of lengths of left and right
slopes of the hill) to all other processors, so that every processor can schedule remaining computation. For example,
the processor 3 sends the pair (3, 2) to other processors, because the left slope of its hill has three rounded rectangles
and the right slope has two pairs of circles and rounded rectangles.

3.2. Second Super Step: Building Mating Pairs
This step matches data fragments kept in each processor into triples using communication between processors, to

execute the rest of the computation efficiently in parallel.
In the local computation phase, every processor computes mating pairs that represent communications necessary

to build triples. For example, in Figure 2, the first two values 3 and 2 of the processor 1 and the last value −∞ of
processor 4 are to form triple (3, 2,−∞) corresponding to the context λx.3 + (2 ↑ x ↑ −∞). Similarly, values 7 and
−1 of the processor 1 and value −4 of the processor 4 are to form the consecutive triple (7,−1,−4). These triples are
enclosed by dotted round rectangles, each of which represents a mating pair. Other dotted round rectangles indicate
other mating pairs.

In the communication phase, each processor sends parts of its hill to other processors according to the computed
mating pairs. For example, the values −∞ and −4 of the last processor are sent to the processor 1 according to the
enclosing mating pair. Similarly, the latter half of values of the processor are sent to the processor 3 according to the
second large mating pair, and values in the other mating pair of the processor 3 are sent to the processor 4. Note that
some mating pairs include an additional left most value, such as the left most −∞ of the mating pair in the processor
4. Please refer to our previous work [2] for details of the scheduling of the communication.

3.3. Third Super Step: Evaluating Mating Pairs and Gathering the Results
This step reduces triples in each mating pair into a triple or a value, and gathers the result into a binary tree to

compute the final result.
For example, in Figure 2, on the processor 4 the mating pair consisting of two triples with the left most additional

−∞ is reduced into one value −4, because they correspond to a forest in the input tree. Triples in the mating pair on
the processor 3 is merged into another triple that represents the context λx. − 1 + (−∞ ↑ x ↑ −3) = (λx. − 5 + (−∞ ↑
x ↑ −∞)) ◦ (λx.4 + (−∞ ↑ x ↑ 3)) that is the composition of contexts represented by the triples (−5,−∞,−∞) and
4,−∞, 3.

In the communication phase, the resulting values and triples are sent to one processor to build a binary tree, as
shown in the bottom of Figure 2.

3.4. Final Computation: Evaluating the Resulting Small Binary Tree
The final step of the algorithm computes the final result of the homomorphism by evaluating the small binary tree.

For example, the final result in Figure 2 is 17, which is the maximum path sum of the example tree.

4. MapReduce Algorithm for Parallel Tree Reductions

We import the BSP algorithm described in Section 3 to MapReduce, so that we can enjoy MapReduce’s nice
features such as fault tolerance, balancing, etc. in parallel computation treating huge tree data. A MapReduce algo-
rithm usually consists of a sequence of Map-Reduce rounds, and each Map-Reduce round consists of a Map phase
and a Reduce phase, in which user-defined Map and Reduce functions are applied to the input and the intermediate
data [1, 15].

Figure 3 shows our MapReduce algorithm demonstrated for the example tree shown in Figure 1, which basically
restructures the BSP algorithm demonstrated in Figure 2. Our MapReduce algorithm consists of two Map-Reduce
rounds. The following subsections explain the Map and Reduce functions.

The parallel time complexity of our MapReduce algorithm is O(n/p + c) where n is the number of nodes in the
input tree, p is the number of processors (Map and Reduce processes) and c is the number of chunks (fragments of
the serialized input tree). Since c is usually much less than n/p, the complexity must be O(n/p). In the following
explanations, we use n, p and c to mean the same values as above.
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Figure 3: Flow of the MapReduce algorithm demonstrated for the maximum path sum computation.
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4.1. The First Map
The first Map mainly corresponds to the first super step of the BSP algorithm: It computes a hill from a subse-

quence of the serialized input by applying the given tree homomorphism to forests, and sends shape information of
hills to the first Reduce. The serialized input tree is stored as chunks on the distributed file system.

Receiving a chunk, the first Map builds a hill from the chunk. It then stores the hill into its local storage, and
outputs the pair of the hill’s shape information and the chunk’s id.

One issue of importing BSP algorithm into MapReduce is a difference between two models: In the BSP model two
local computations in different super steps on the same processor can share any local data without any overhead, but
in MapReduce model two Maps in different Map-Reduce rounds cannot share any local data even if they are executed
on the same processor. Basically, to share large local data among Maps separated by a Reduce, one Map needs to
output the local data to the distributed file system and the other has to read it from the distributed file system. This
may lead to non-negligible overhead due to network traffic. To reduce such overhead, we have selected an alternative
approach: The first Map writes its computed hills into its local storage, and the hills are read by the second Map
run on the same processor without any network traffic. It should be noted that this alternative approach has less fault
tolerance than the approach storing local data into the distributed file system: If a processor dies in the second Map,
we have to rerun the first Map to recover hills stored in its local storage, but such recovery over multiple Map-Reduce
rounds is not supported by MapReduce. This is a trade-off of efficiency and fault tolerance.

There is another issue of importing BSP algorithm into MapReduce: we do not have a cost model on MapReduce,
while we can enjoy the nice cost model of BSP, e.g., in optimizing BSP algorithms. This topic is beyond the scope of
this paper, but it is an interesting direction of further research.

The parallel time complexity of this phase is O(n/p + c), because p Maps process the entire input of length n in
parallel, and the total size of their output (shape information) is proportional to c, the number of hills.

4.2. The First Reduce
The first Reduce corresponds to the local computation of the second super step: It receives shape information of

all hills, computes all mating pairs from the information, and writes the whole information of mating pairs into the
distributed file system. The information of the mating pairs is used by all of the second Maps.

The time complexity of this phase is O(c), because the time complexity of the computation of all mating pairs is
proportional to the number of hills, namely, c [2].

4.3. The Second Map
The second Map corresponds to the communication phase of the second super step: It reads hills from its local

storage, and outputs parts of mating pairs as the intermediate data to the second Reduces. Two parts of a mating pair
have the same key representing its position in the final binary tree. For example, the left most part of the hill of the
chunk 1 has the key MP that represent the root. Similarly, its counterpart, namely, the right most part of the hill of
chunk 4 has the same key. The rest of the hill of the chunk 1 and its counterpart have the key MP0 that represents the
left child of the root. Since the singleton hill of the chunk 2 is the right child of MP0, it has key MP01.

The parallel time complexity of this phase is O(n/p), because each mating pair has a unique key, and all mating
pairs of total size O(n) can be output in parallel by p Maps.

4.4. The Second Reduce
The second Reduce corresponds to the local computation of the third super step: Receiving the pair of parts of

a mating pair, it reduces triples in the mating pair into a value or a triple, and writes the result to the distributed file
system.

The parallel time complexity of this phase is O(n/p), because all mating pairs of total size O(n) can be processed
in parallel by p Reducers.

4.5. The Final Computation
The final computation builds the small binary tree from the results of the second Reduce, and evaluating the binary

tree to get the final result of the homomorphism. This part should be done sequentially outside the Map-Reduce
rounds. The time complexity is O(c), because the size of the tree is proportional to the number of hills c [2].
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Table 1: Input serialized trees for the evaluation.
name # of nodes/leaves depth # of mating pairs

Shallow 3 × 108 10 3000
Deep 3 × 108 43536 5886

Monadic 3 × 108 3 × 108 5997

Table 2: Execution time (seconds) of MapReduce algorithm
Shallow Deep Monadic

P M1&R1 M2&R2 Total M1&R1 M2&R2 Total M1&R1 M2&R2 Total
1 1294 649 1944 1322 661 1986 1298 9673 10973
2 722 260 990 779 334 1123 1026 5148 6186
4 391 158 557 414 172 595 580 2838 3426
8 215 99 322 224 103 337 296 1431 1736

Table 3: Execution time of Simplified algorithm

P Shallow Deep Monadic
1 1294 1322 N.A.
2 696 769 N.A.
4 358 400 N.A.
8 192 234 N.A.

4.6. Simplified Algorithm

In typical cases, the size of hills built by the first Map is expected to be small, and we may simplify the algorithm
by merging the hills sequentially on one processor in the first Reduce phase, instead of doing the second round of
Map-Reduce to merge (reduce) the hills in parallel. This alternative algorithm corresponds to Algorithm 1 in the
technical report [3]. When the hills and the number of them are small, the parallel time complexity keeps O(n/p).

In the following sections, we call this alternative “simplified algorithm”, and the original algorithm with two
Map-Reduce rounds “mating-pair algorithm”.

5. Experimental Results and Discussion

We have evaluated our two MapReduce algorithms on a small cluster of eight PCs (Intel Core 2 Duo and 2GB
memory) connected by Giga-bit Ethernet. We used Hadoop 0.20.203.0 [9, 10], Linux 2.6.32, Java 1.6.0, and Scala 2.9.1.
We have implemented the proposed algorithms as a library on Scala so that users can easily use our algorithms by
simply implementing their homomorphisms in Scala’s concise notation. We prepared randomly generated trees of
three types, namely (Shallow) shallow, (Deep) deep, and (Monadic) monadic tree. The depth of Shallow came from
observations on XML documents [16]. Table 1 shows information of the input. The tree homomorphism executed by
algorithms was of the maximum path sum computation, namely, maxPath.

Table 2 lists measured execution times of the mating-pair algorithm, in which the column M1&R1 lists execution
times of the first Map-Reduce round, and M2&R2 the second round. For non-extreme inputs, namely, Shallow and
Deep, the first round takes about two thirds of the total execution time, while for the extreme input Monadic the
second round dominates the total execution time. The reason of the behavior is as follows. For Monadic, no valley is
reduced in the first round, and every hill has the same length as the input chunk. Thus, almost all computation of the
homomorphism is done in the Reduce of the second round. Figure 4 shows speedups of the algorithm, and it shows
that our mating-pair algorithm scales even for the extreme input.

Table 3 lists measured execution times of the simplified algorithm. For Shallow and Deep, the simplified algorithm
is faster than the mating-pair algorithm, because the size of the hills is small for these inputs and thus the sequential
merging of the hills is cheaper than the computation using mating pairs. However, the simplified algorithm does not
work for Monadic. This is because, for Monadic, its Reduce has to apply the homomorphism to the whole of the
input, but the input is too large to be stored in the memory, and the process aborts.

These result suggest a hybrid algorithm that uses the simplified algorithm for non-extreme inputs and the mating-
pair algorithm for extreme inputs.

Finally, Figure 6 shows experimental results on Amazon EC2 up to 96 instances, in which we used small instances
and Hadoop 0.20.203.0 with the default configuration except for the chunk size of 4MB. Our proposed method scales
well in the practical cloud environment.
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Figure 4: Relative speedup of MapReduce algorithm
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Figure 5: Relative speedup of Simplified algorithm
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Figure 6: Experimental results of MapReduce algorithm on Amazon EC2

6. Related Work

Much effort has been devoted to developing tree homomorphisms for various problems, such as queries on trees [6,
8], dynamic programming [7], etc. [14, 17, 18]. Our proposed MapReduce algorithm enables computations of these
problems to be run on MapReduce, in which we can enjoy nice features such as fault tolerance, load-balancing, etc.

Liu et al. [19] proposed a MapReduce algorithm of list homomorphism [13, 20]. Since many studies have been
done for deriving list homomorphisms for large class of problems [21, 22, 23, 24, 25, 26], their work enables many
computations treating lists to be run on MapReduce enjoying its nice features. Our work in this paper plays a similar
role for tree problems.

Many studies have been devoted to graph computations on MapReduce, e.g., [27, 28, 29]. The common idea is to
iterate MapReduce rounds (jobs) in which the Map is applied to each vertex to produce partial results from its internal
state, the partial results are grouped and passed to its neighbor vertices (in the Shuffle phase), and for each vertex the
Reducer computes vertex’s new internal state based on the incoming partial results. Since a tree is a special case of
graphs, to carry out some tree computaions we may use their proposed methods, but such an approach has drawbacks
in expressiveness and efficiency: no recursive computation is allowed and the number of Map-Reduce rounds is at
least O(log(n))) for the input tree with n nodes. Our proposed method can carry out a recursive computation on a tree
in parallel by using one or two MapReduce rounds.

There are few studies involving tree computations on MapReduce. Khatchadourian et al. proposed ChuQL [30]
that extends XQuery with MapReduce primitives, in which the output sequence of XQuery can be supplied to MapRe-
duce and vice versa seamlessly, and we can use XQuery in Map and Reduce. However, a query itself is not parallelized
in ChuQL by MapReduce. Our proposed method is capable of parallelizing an XPath query [6].
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7. Conclusion

This paper describes a MapReduce algorithm for tree reduction that can implement various tree computations
such as XPath queries on XMLs and etc [6, 7, 8]. The described algorithm is the first one that can achieve linear
speedup even for the extreme input, e.g.,, monadic trees. This paper also gives a simplified algorithm that achieves
faster execution time for typical input. The experimental results suggests a hybrid algorithm of them.

Our future direction includes implementing various applications upon the proposed algorithm, and development
of user-friendly interfaces to the algorithm.
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