
Generate, Test, and Aggregate

A Calculation-based Framework for Systematic Parallel
Programming with MapReduce?

Kento Emoto1, Sebastian Fischer??, and Zhenjiang Hu2

1 The University of Tokyo
2 National Institute of Informatics, Tokyo

Abstract. MapReduce, being inspired by the map and reduce primi-
tives available in many functional languages, is the de facto standard
for large scale data-intensive parallel programming. Although it has suc-
ceeded in popularizing the use of the two primitives for hiding the details
of parallel computation, little effort has been made to emphasize the
programming methodology behind, which has been intensively studied
in the functional programming and program calculation fields. We show
that MapReduce can be equipped with a programming theory in calcula-
tional form. By integrating the generate-and-test programing paradigm
and semirings for aggregation of results, we propose a novel parallel pro-
gramming framework for MapReduce. The framework consists of two
important calculation theorems: the shortcut fusion theorem of semir-
ing homomorphisms bridges the gap between specifications and efficient
implementations, and the filter-embedding theorem helps to develop par-
allel programs in a systematic and incremental way. We give nontrivial
examples that demonstrate how to apply our framework.

1 Introduction

MapReduce [6], the de facto standard for large scale data-intensive applications,
is a remarkable parallel programming model, allowing for easy parallelization
of data intensive computations over many machines in a cloud. It is used rou-
tinely at companies such as Yahoo!, Google, Amazon, and Facebook. Despite its
abstract interface that effectively hides the details of parallelization, data dis-
tribution, load balancing, and fault tolerance, developing efficient MapReduce
parallel programs remains as a challenge in practice.

As a concrete example, consider the known statistics problem of inferring
a sequence of hidden states of a probabilistic model that most likely causes a
sequence of observations [13] (see details in Section 6). This problem is important

? An extended version of this paper including more explanations and an additional
section on generalizing our approach to arbitrary algebraic data types is available
as Technical Report METR2011-34, University of Tokyo, http://www.keisu.t.u-
tokyo.ac.jp/research/techrep/.

?? supported by the German Academic Exchange Service (DAAD)

in natural language processing and error code correction, but it is far from
easy for one to come up with an efficient MapReduce program to solve it. The
problem becomes more difficult, if we would like to find the most likely sequence
with additional requirements such that the sequence should contain a specific
state exactly five times, or that the sequence should not contain a specific state
anywhere after another. The main difficulty in programming with MapReduce
is that nontrivial problems are usually not in a simple divide-and-conquer form
that can be easily mapped to MapReduce without producing an exponential
number of intermediate candidates. Moreover, the inputs may not just form a
simple set of elements as in MapReduce; rather they are often structured as lists.

The MapReduce framework was inspired by the map and reduce (fold) prim-
itives available in many functional languages. Although it has successfully pop-
ularized the use of these two primitives for hiding the details of parallel com-
putation, little effort has been made to emphasize the programming methodol-
ogy behind, which has been intensively studied in functional programming and
program calculation [1, 3, 8, 14, 22]. This lack of programming methodology for
MapReduce has led to publication of too many papers about MapReduce appli-
cations [18], each addressing a solution to one specific problem, even if quite a
lot of problems follow a common pattern and can be solved generally.

To remedy this situation, we will show that MapReduce can be equipped with
a programming theory in calculational form [3, 15, 24], which can be applied to
give efficient solutions to a wide class of problems. For illustration, we consider
a general class of problems which can be specified in the following generate-test-
and-aggregate (GTA for short) form (here, ◦ denotes function composition):

aggregate ◦ test ◦ generate

Problems that match this specification can be solved by first generating possible
solution candidates, then keeping those candidates that pass a test of a certain
condition, and finally selecting a valid solution or making a summary of valid
solutions with an aggregating computation. For example, the above statistics
problem may be informally specified by generating all possible sequences of state
transitions, keeping those that satisfy a certain condition, and selecting one that
maximizes the products of probabilities (see Section 6).

Like other programming theories in calculational form [15, 24], the big chal-
lenges in the development of our calculation theory are to decide a structured
form such that any program in this form is guaranteed to be efficiently paral-
lelized, and to show how a specification can be systematically mapped to the
structured form. To this end, we refine the specification with constraints on each
of its components.

– The generator should be parallelizable in a divide-and-conquer manner and
polymorphic over semiring structures, guaranteeing that the final program
can be coded with MapReduce efficiently.

– The condition for the test should be defined structurally in terms of a list
homomorphism.

– The aggregator should be a semiring computation (semiring homomorphism),
guaranteeing that the aggregating computation is structured in a way that
matches with the generator.

These constraints, as will be seen later, can be satisfied for practical problems
such as the statistics problem mentioned above. An interesting result of this pa-
per is that any specification that satisfies these constraints can be automatically
mapped to an efficient parallel program in, but not limited to, MapReduce.

In this paper, by integrating the generate-and-test programing paradigm and
semirings for result aggregation, we propose a novel parallel programming frame-
work that is centered on two calculation theorems, the semiring fusion theorem
and the filter embedding theorem. These two calculation theorems play an im-
portant role for the systematic development of efficient parallel programs in
MapReduce for a problem that is specified by a semiring-polymorphic gener-
ator, a test with a homomorphic predicate, and a semiring homomorphism as
aggregator. Our main technical contributions can be summarized as follows.

– We propose a new formalization of GTA problems in the context of parallel
computation based on the semiring fusion theorem. We show how a generator
can be specified as a list homomorphism polymorphic over semirings, an
aggregator can be specified as a semiring homomorphism, and fusion of their
composition can be done for free and results in an efficient homomorphism
parallelizable by MapReduce.

– We propose a new systematic and incremental development of parallel pro-
grams for more complicated GTA problems based on the filter embedding
theorem. The filter-embedding theorem allows a semiring homomorphism
to absorb preceding tests yielding a new semiring homomorphism. We give
nontrivial examples that demonstrate how to apply our framework.

The rest of the paper is organized as follows. We start with background
on lists, monoids, homomorphisms, and MapReduce in Section 2. Then, after
exemplifying our approach to specify parallel programs by means of the knap-
sack problem in Section 3, we focus on two important calculation theorems, the
shortcut fusion theorem for semiring homomorphisms in Section 4, and the fil-
ter embedding theorem in Section 5. We discuss a more complex application in
Section 6. Finally, we discuss related work in Section 7 and conclude in Section 8.

2 Background: Lists, Monoids and MapReduce

The notation in this paper is reminiscent of Haskell [2]. Function application is
denoted by a space and the argument may be written without brackets, so that
(f a) means f(a) in ordinary notation. Functions are curried: they always take
one argument and return a function or a value, and the function application
associates to the left and binds more strongly than any other operator, so that
f a b means (f a) b and f a⊗b means (f a)⊗b. Function composition is denoted
by ◦, and (f ◦ g) x = f (g x) according to its definition. Binary operators can be
used as functions by sectioning as follows: a ⊕ b = (a⊕) b = (⊕b) a = (⊕) a b.

2.1 Lists, Monoids, and Homomorphisms

Lists are finite sequences of values of the same type. A list is either empty, a
singleton, or the concatenation of two other lists. We write [] for the empty list,
[x] for the singleton list with element x , and xs ++ ys for the concatenation of
two lists xs and ys. For example, the term [1] ++ [2] ++ [3] denotes a list with
three elements, often abbreviated as [1, 2, 3]. We write [A] for the type of lists
with elements of type A.

Definition 1 (Monoid). Given a set M and a binary operator � on M , the
pair (M ,�) is called a monoid if and only if � is associative and has an identity
ı� ∈ M :

(a � b)� c = a � (b � c)
ı� � a = a = a � ı�

For example, ([A],++) is a monoid: ++ is associative and [] is its identity.
Homomorphisms are structure preserving mappings. In the case of monoids

they respect the binary operation and its identity.

Definition 2 (Monoid Homomorphism). Given two monoids (M ,�) and
(M ′,�′), a function hom :M → M ′ is called monoid homomorphism from (M ,�)
to (M ′,�′) if and only if:

hom ı� = ı�′

hom (x � y) = hom x �′ hom y

For example, the function sum for summing up all elements in a list is a monoid
homomorphism from ([Z],++) to (Z,+):

sum [] = 0
sum [x] = x
sum (xs ++ ys) = sum xs + sum ys

There is more than one monoid homomorphism from ([Z],++) to (Z,+) but the
property sum [x] = x characterizes sum uniquely, because [A] is the free monoid
over A: for every result monoid, a list homomorphism (monoid homomorphism
from lists) is characterized uniquely by its result on singleton lists.

List homomorphisms are relevant to parallel programming because associa-
tivity allows to distribute the computation evenly among different processors or
even machines by the well-known divide-and-conquer parallel paradigm [5,22].

2.2 MapReduce

MapReduce [6] is a parallel programming technique, made popular by Google,
used for processing large amounts of data. Such processing can be completed in a
reasonable amount of time only by distributing the work to multiple machines in

parallel. Each machine processes a small subset of the data. We will not discuss
the details of MapReduce in this paper.

List homomorphisms fit well with MapReduce, because their input list can
be freely divided and distributed among machines. In fact, it has been shown
recently that list homomorphisms can be efficiently implemented using MapRe-
duce [19]. Our approach builds on such an implementation which is orthogonal
to our work. Therefore, if we can derive an efficient list homomorphism to solve
a problem, we can solve the problem efficiently with MapReduce, enjoying its
advantages such as automatic load-balancing, fault-tolerance, and scalability.

Some readers might feel that there is a mismatch between a typical MapRe-
duce computation and computations in GTA style, because the size of the re-
sults generated by map in the former is often proportional to the size of the
input data while the latter appears to have much larger intermediate results.
This mismatch is a strength of our approach: based on a naively-designed GTA
specification our calculation theorems can provide an efficient MapReduce im-
plementation with intermediate results proportional to the size of the input, i.e.,
efficient list homomorphisms. Our approach makes MapReduce applicable to ap-
plications appearing not to match the MapReduce pattern. As a consequence, it
allows programmers to implement MapReduce algorithms by providing an often
simpler specification in GTA form.

3 Running Example: The Knapsack Problem

In this section we give a simple example of how to specify parallel algorithms in
GTA form. We give a clear but inefficient specification of the knapsack problem
following this structure and use it throughout Sections 4 and 5 to show how to
transform such specifications into efficient parallel programs.

The knapsack problem is to fill a knapsack with items, each of certain value
and weight, such that the total value of packed items is maximal while adhering
to a weight restriction of the knapsack. For example, if the maximum total weight
of our knapsack is 5kg and there are three items (¥2000, 1kg), (¥3000, 3kg),
and (¥4000, 3kg) then the best we can do is pick the selection (¥2000, 1kg),
(¥4000, 3kg) with total value ¥6000 and weight 4kg because all selections with
larger value exceed the weight restriction.

The function knapsack , which takes as input a list of value-weight pairs (both
positive integers) and computes the maximum total value of a selection of items
not heavier than a total weight w , can be written as a composition of three
functions:

knapsack = maxvalue ◦ filter ((6 w) ◦ weight) ◦ sublists

– The function sublists is the generator. From the given list of pairs it computes
all possible selections of items, that is, all 2n sublists if the input list has
length n.

– The function filter ((6 w) ◦ weight) is the test. It discards all generated
sublists whose total weight exceeds w and keeps the rest.

– The function maxvalue is the aggregator. From the remaining sublists ad-
hering to the weight restriction it computes the maximum of all total values.

The function sublists can be defined as follows:

sublists [] = *[]+
sublists [x] = *[]+] *[x]+
sublists (xs ++ ys) = sublists xs ×++ sublists ys

The result of sublists is a bag of lists which we denote using * and +. The
symbol] denotes bag union and ×++ the lifting of list concatenation to bags,
concatenating every list in one bag with every list in the other. The function
sublists is a monoid homomorphism: ×++ is associative and *[]+ is its identity.

The function filter filters a bag according to the given predicate. We pass as
predicate the composition of the function weight that adds all weights in a list
and the function (6 w) that checks the weight restriction. Like sublists, weight
is a monoid homomorphism:

weight [] = 0
weight [(v ,w)] = w
weight (xs ++ ys) = weight xs + weight ys

Finally, maxvalue computes the maximum of summing up the values of each list
in a bag using the maximum operator ↑.

maxvalue *+ = −∞
maxvalue *[]+ = 0
maxvalue *[(v ,w)]+ = v
maxvalue (b] b′) = maxvalue b ↑maxvalue b′

maxvalue (b ×++ b′) = maxvalue b + maxvalue b′

Regarding the last equation, remember that the lifted list concatenation ×++
appends each list in one bag with each in the other, and, therefore, the maximum
total value of the concatenated lists is the sum of the maximum total values of
the lists in each bag. This observation relies on distributivity of + over ↑, a
property that we will revisit in the next section.

4 Semiring Fusion

In this section we show how to derive efficient parallel programs from specifica-
tions in generate-and-aggregate form:

aggregate ◦ generate

This form is a simplified version of GTA form, missing the test. We define spe-
cific kinds of generators and aggregators that allow such specifications to be
implemented efficiently and provide a theorem that shows how to calculate effi-
cient parallel implementations. Such a calculation can turn an exponential-time
specification into a linear-time implementation.

4.1 Semirings and their Homomorphisms

The specification for the function maxvalue in Section 3 shows that it is a monoid
homomorphism with respect to two different monoids over the same set (bags of
lists). We now consider an algebraic structure that relates two such monoids.

Definition 3 (Semiring). A triple (S ,⊕,⊗) is called a semiring if and only if
(S ,⊕) and (S ,⊗) are monoids, and additionally ⊕ is commutative, ⊗ distributes
over ⊕, and ı⊕ is a zero of ⊗:

a ⊕ b = b ⊕ a
a ⊗ (b ⊕ c) = (a ⊗ b)⊕ (a ⊗ c)
(a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c)
ı⊕ ⊗ a = ı⊕ = a ⊗ ı⊕

We have already seen two semirings in Section 3:

– (Z−∞, ↑,+) is a semiring because both ↑ and + are associative, commuta-
tive and have identities −∞ and 0, respectively, where Z−∞ = Z∪{−∞}.
Moreover, + distributes over ↑ and −∞ is a zero of +.

– (*[A]+,],×++) is a semiring for every set A because] is associative and
commutative and ×++ is associative. Moreover, *+ and *[]+ are the identities
of] and ×++, respectively. Interestingly, ×++ distributes over] and, clearly,
*+ is a zero of ×++. Readers who verify distributivity of ×++ will make crucial
use of the ability to reorder bag elements.

Definition 4 (Semiring Homomorphism). Given two semirings (S ,⊕,⊗)
and (S′,⊕′,⊗′), a function hom : S → S′ is a semiring homomorphism from
(S ,⊕,⊗) to (S′,⊕′,⊗′) if and only if it is a monoid homomorphism from (S ,⊕)
to (S′,⊕′) and a monoid homomorphism from (S ,⊗) to (S′,⊗′).

The maxvalue function presented in Section 3 is a semiring homomorphism from
(*[Z−∞ × Z−∞]+,],×++) to (Z−∞, ↑,+). It additionally satisfies the property
maxvalue *[(v ,w)]+ = v which characterizes it uniquely because bags of lists
over a set A form the free semiring.

Lemma 1 (Free Semiring). Given a set A, a semiring (S ,⊕,⊗), and a func-
tion f : A→ S there is exactly one semiring homomorphism h : *[A]+→ S from
(*[A]+,],×++) to (S ,⊕,⊗) that satisfies h *[x]+ = f x . ut

The unique homomorphism can be thought of as applying f to each list element,
then accumulating the results in each list using the operator ⊗, and finally
accumulating those results using the operator ⊕.

4.2 Polymorphic Generators

We now return to the generator sublists defined in Section 3. This function
almost exclusively uses the semiring operations of the semiring *[A]+ and their
identities. The only exception is *[x]+ constructed from an element x ∈ A.

We can generalize sublists by parameterizing it with operations ⊕ and ⊗ of
an arbitrary semiring (and their identities) as well as an embedding function that
constructs semiring elements from elements of a (potentially) different type:

sublists⊕,⊗ f [] = ı⊗
sublists⊕,⊗ f [x] = ı⊗ ⊕ f x
sublists⊕,⊗ f (xs ++ ys) = sublists⊕,⊗ f xs ⊗ sublists⊕,⊗ f ys

This function is called polymorphic over semirings because it can construct a
result in an arbitrary semiring determined by the passed semiring operators and
embedding function. It is a generalization of sublists because

sublists = sublists],×++ (λx → *[x]+)

The anonymous function passed as argument constructs a singleton bag contain-
ing a singleton list with the argument x .

Definition 5 (Polymorphic Semiring Generator). A function

generate⊕,⊗ : (A→ S)→ [A]→ S

that is polymorphic over an arbitrary semiring (S ,⊕,⊗) is called a polymorphic
semiring generator.

The function sublists⊕,⊗ is a polymorphic semiring generator and, being a monoid
homomorphism for any semiring, it can be executed in parallel. We could also
pass the operations of the semiring Z−∞ to compute a result in Z−∞.

sublists↑,+ (λ(v ,w)→ v) : *[Z−∞ × Z−∞]+→ Z−∞

What does this function compute? Theorem 1, which is a variant of short-cut
fusion for semiring homomorphisms, casts light on this question.

Theorem 1 (Semiring Fusion). Given a set A, a semiring (S ,⊕,⊗), a semir-
ing homomorphism aggregate from (*[A]+,],×++) to (S ,⊕,⊗), and a polymor-
phic semiring generator generate, the following equation holds:

aggregate ◦ generate],×++ (λx → *[x]+) = generate⊕,⊗ (λx → aggregate *[x]+)

Proof. Free Theorem3 [26].

We can use Theorem 1 to see what sublists↑,+ (λ(v ,w)→ v) computes.

maxvalue ◦ sublists
= maxvalue ◦ sublists],×++ (λ(v ,w)→ *[(v ,w)]+)
= sublists↑,+ (λ(v ,w)→ maxvalue *[(v ,w)]+)
= sublists↑,+ (λ(v ,w)→ v)

3 The proof can be automated using an online tool: http://www-ps.iai.uni-
bonn.de/cgi-bin/free-theorems-webui.cgi

This derivation shows that sublists↑,+ (λ(v ,w) → v) computes the maximum
of all total values of sublists of the input list, but—unlike the intuitive formu-
lation at the beginning of the equation chain—efficiently. While the run time
of maxvalue ◦ sublists is exponential in the length of the input list (because
the result of sublists has exponential size), the run time of the derived version
sublists↑,+ (λ(v ,w) → v) is linear in the length of the input list (it adds up all
positive values in the input).

Of course, this is of little use for solving the knapsack problem posed in
Section 3 because the input list in this problem contains only positive values
and maxvalue ◦ sublists, thus, computes the total value of all available items.

For solving the knapsack problem, it is crucial to compute the maximum value
only of those sublists of the input list which adhere to the weight restriction. We
need to account for the test that implements this restriction which is the topic
of the next section.

5 Filter Embedding

We cannot apply Theorem 1 to transform specifications of the form

aggregate ◦ test ◦ generate

because the intermediate test goes in the way of fusing the aggregator with
the generator. We now show how specific instantiations of test allow to rewrite
specifications like above into the form

postprocess ◦ aggregate ′ ◦ generate

where aggregate ′ is a semiring homomorphism derived from aggregate and test ,
and postprocess maps the result type of aggregate ′ to the result type of aggregate.
This form then allows to fuse aggregate ′ with generate to derive an efficient
implementation.

This transformation is possible if

test = filter (ok ◦ hom)

is a filter where the predicate is a composition of a monoid homomorphism
hom : [A]→ M into a finite monoid M and a function ok : M → Bool that maps
elements of M to Booleans.

Before we describe the general theorem in Section 5.2, we develop the un-
derlying ideas by deriving an efficient implementation from the knapsack speci-
fication. This development may seem to require some clever insights but users of
our approach do not need to follow the same path when transforming their own
specifications. We chose to present the ideas using a concrete example first, to
make them seem less clever in the subsequent generalization. Others can simply
apply our general theorem to their specifications rather than repeating our de-
velopment for each specification on their own. We can even provide an API that
supports specifications in GTA form and implements them as efficient parallel
programs automatically.

5.1 Developing Intuitions by Example

In Section 3 we have specified the knapsack function as follows:

knapsack = maxvalue ◦ filter ((6 w) ◦ weight) ◦ sublists

This specification is almost of the form we require:

– maxvalue, the aggregator, is a semiring homomorphism and
– the predicate used for filtering is a composition of the monoid homomor-

phism weight and the function (6 w) that maps the result of weight into the
Booleans.

However, the result type of weight is N which is an infinite monoid, not a finite
one. We can remedy the situation by defining Mw = {0, . . . , w + 1} and

weightw [] = 0
weightw [n] = (w + 1) ↓ n
weightw (ms ++ ns) = weightw ms +w weightw ns

where m +w n = (w + 1) ↓ (m + n)

The operator +w implements addition but limits the result by computing the
minimum with w + 1 by using the minimum operator ↓. For non-negative argu-
ments it is associative and 0 is its identity. Consequently, weightw is a monoid
homomorphism into the finite monoid (Mw,+w) for all weight restrictions w .

To transform the function maxvalue ◦ filter ((6 w) ◦ weightw) into the form
postprocessw ◦ maxvaluew we need to invent a semiring to use as result type
of maxvaluew. The idea is to compute simultaneously for all weights in Mw the
maximum value of lists with exactly that weight. The function postprocessw then
computes the maximum over all values associated to weights 6 w .

We use w = 5 as an example, so semiring elements can be represented as
7-tuples over Z−∞. The function postprocess5 is defined as follows:

postprocess5 (v0, v1, v2, v3, v4, v5, v6) = v0 ↑ v1 ↑ v2 ↑ v3 ↑ v4 ↑ v5

It computes the maximum of all values vi associated with weights i 6 5. The
entry v6 for the weight 6 accumulates the maximum value corresponding to all
weights > 6 because +w cuts off greater sums.

We now turn Z7
−∞ into a semiring (Z7

−∞, ↑
7,+7). To compute the maximum

value associated to each weight of two 7-tuples, we use the underlying maximum
operation on values.

(v0, v1, v2, v3, v4, v5, v6) ↑7 (v ′0, v
′
1, v
′
2, v
′
3, v
′
4, v
′
5, v
′
6) =

(v0 ↑ v ′0, v1 ↑ v ′1, v2 ↑ v ′2, v3 ↑ v ′3, v4 ↑ v ′4, v5 ↑ v ′5, v6 ↑ v ′6)

This operator clearly inherits associativity and commutativity from the under-
lying maximum operator and its identity is

(−∞,−∞,−∞,−∞,−∞,−∞,−∞)

The operator +7 is more interesting. From two 7-tuples that associate maxi-
mum values to each weight in M5 it computes another 7-tuple that associates
maximum values to the combined weights. For example, to find the maximum
value associated to the weight 3, it computes the maximum of all sums of values
associated to weights that sum up to 3 (we omit the part for larger weights):

(v0, v1, v2, v3, v4, v5, v6) +7 (v ′0, v
′
1, v
′
2, v
′
3, v
′
4, v
′
5, v
′
6) =

(v0 + v ′0
, (v0 + v ′1) ↑ (v1 + v ′0)
, (v0 + v ′2) ↑ (v1 + v ′1) ↑ (v2 + v ′0)
, (v0 + v ′3) ↑ (v1 + v ′2) ↑ (v2 + v ′1) ↑ (v3 + v ′0)
, ...)

This operator is associative and its identity is

(0,−∞,−∞,−∞,−∞,−∞,−∞)

We now define maxvalue5 as the (cf. Lemma 1) semiring homomorphism that
satisfies the following equation:

maxvalue5 *[(v ,w)]+ = (val 0, val 1, val 2, val 3, val 4, val 5, val 6)
where val i = if i ≡ (w ↓ 6) then v else −∞

When applied to a singleton bag that contains a list with exactly one item,
maxvalue5 associates to almost all weights the value −∞ with one exception:
the value of the given item is associated to its weight (or to the weight 6 if it is
heavier).

Our Main Theorem 3 below, now implies that for w = 5

knapsack = postprocess5 ◦ sublists↑7,+7 (λ(v ,w)→ maxvalue5 *[(v ,w)]+)

The run time of the transformed version of knapsack is O(nw2) if there are n
items and the weight restriction is w. As sublists↑7,+7 is a monoid homomorphism
we can execute it in parallel, say using p processors, which leads to the run
time O((log p+ n

p)w2). This complexity resembles the run time of other parallel
algorithms to solve the knapsack problem. The standard sequential algorithm
has run time O(nw).

Unlike existing algorithms to solve the knapsack problem, our approach can
be generalized to other specifications in GTA form. The knapsack function is
a special case well suited to highlight the ideas behind our approach, which we
now generalize.

5.2 The Generalized Theorem

We now generalize the ideas of Section 5.1 to support

– arbitrary polymorphic semiring generators,
– arbitrary filters with homomorphic predicates, and

– arbitrary semiring homomorphisms as aggregators.

In Section 5.1 we have used a semiring of 7-tuples storing maximum values
corresponding to each weight in M5. In general, if we have a finite monoid M
and a semiring S , then the set

SM = {{fm}m∈M |fm ∈ S}

of families of elements in S indexed by M is a semiring too. Indexed families
are a generalization of tuples and we write fm for the element in S indexed by
the value m ∈ M if f ∈ SM is an indexed family. We give definitions of indexed
families by defining their value in S for each m ∈ M .

Lemma 2 (Lifted Semiring). Given a finite monoid (M ,�) and a semiring
(S ,⊕,⊗) the triple (SM ,⊕M ,⊗M) where

(f ⊕M f ′)m = fm ⊕ f ′m
(f ⊗M f ′)m =

⊕
k,l∈M
k�l=m

(fk ⊗ f ′l)

is a semiring and

(ı⊕M
)m = ı⊕

(ı⊗M
)m = if m ≡ ı� then ı⊗ else ı⊕

Proof. The monoid laws for ⊕M follow directly from those of ⊕. We leave the
proof of the laws for ⊗M to interested readers.

The definition of ⊕M uses the underlying ⊕ operator just like the definition
of ↑7 in Section 5.1 uses ↑. The operator ⊗M , like +7, computes for each m
the maximum of all sums of values associated to weights that add up to m if
we instantiate � and ⊗ with + and ⊕ with ↑. The identities also reflect their
specific counterparts from Section 5.1.

Intuitively, given a monoid homomorphism hom : [A]→ M , a semiring homo-
morphism aggregate : *[A]+→ S , and a bag of lists ls, we can associate to ls an
indexed family f ls ∈ SM that describes for each m ∈ M the result of applying
aggregate to a bag of exactly those lists l ∈ ls that satisfy hom l = m:

f lsm = aggregate (filter ((m ≡) ◦ hom) ls)

Considering different instantiations for ls, we can observe the following identities:

f
*+
m = ı⊕

f
*[]+
m = if m ≡ ı� then ı⊗ else ı⊕

f ls]ls′
m = f lsm ⊕ f ls

′

m

f
ls×++ls′

m =
⊕

k,l∈M
k�l=m

(f lsk ⊗ f ls
′

l)

They reflect the definitions of the semiring operations for SM and their identities.
Because of these homomorphic equations for f ls , we can compute f ls using a
semiring homomorphism aggregateM that satisfies

(aggregateM*[x]+)m

= f
*[x]+
m

= aggregate (filter ((m ≡) ◦ hom) *[x]+)
= if hom [x] ≡ m then aggregate *[x]+ else ı⊕

According to Lemma 1 this semiring homomorphism is unique.

Definition 6 (Lifted Homomorphism). Given a set A, a finite monoid (M ,�),
a monoid homomorphism hom from ([A],++) to (M ,�), a semiring (S ,⊕,⊗),
and a semiring homomorphism aggregate from (*[A]+,],×++) to (S ,⊕,⊗), the
function

aggregateM : *[A]+→ SM

is the unique semiring homomorphism from (*[A]+,],×++) to (SM ,⊕M ,⊗M)
that satisfies

(aggregateM*[x]+)m = if hom [x] ≡ m then aggregate *[x]+ else ı⊕

The function aggregateM generalizes the function maxvalue5 by using aggregate
and ı⊕ instead of maxvalue and −∞.

Once we have computed f ls , we can use a function ok :M → Bool to combine
all results f lsm for m ∈ M with ok m = True to get the result of

aggregate (filter (ok ◦ hom) ls) =⊕
m∈M

ok m=True

(aggregate (filter ((m ≡) ◦ hom) ls))

According to this equation, we can partition the bag of accepted lists according
to elements of M and aggregate them individually because aggregate is a semir-
ing homomorphism. The postprocessor defined next combines such individual
aggregations.

Definition 7 (Postprocessor). Given sets M (finite) and S and a function
ok : M → Bool the function postprocessM ok : SM → S is defined as follows:

postprocessM ok f =
⊕

m∈M
ok m=True

fm

It is clearly a generalization of postprocess5 which computes the maximum of all
values associated to weights 6 5.

We can now prove the theorem which constitutes the second half of our ap-
proach. It clarifies how to embed an arbitrary filter with a homomorphic predi-
cate into an arbitrary semiring homomorphism.

Theorem 2 (Filter Embedding). Given a set A, a finite monoid (M ,�),
a monoid homomorphism hom from ([A],++) to (M ,�), a semiring (S ,⊕,⊗),
a semiring homomorphism aggregate from (*[A]+,],×++) to (S ,⊕,⊗), and a
function ok : M → Bool the following equation holds:

aggregate ◦ filter (ok ◦ hom) = postprocessM ok ◦ aggregateM

Proof. The following calculation combines previous observations and definitions
to show the claimed identity.

aggregate (filter (ok ◦ hom) ls)
= { Partition, individual aggregation }⊕

m∈M
ok m=True

(aggregate (filter ((m ≡) ◦ hom) ls))

= { Definition of f ls , and Definition 7 }
postprocessM ok f ls

= { Definition 6, homomorphic equations for f ls }
postprocessM ok (aggregateM ls)

Our main result combines the theorems from Sections 4 and 5. It allows, under
certain conditions, to transform specifications in GTA form into efficient parallel
algorithms.

Main Theorem 3 (Filter-embedding Semiring Fusion) Given a set A, a
finite monoid (M ,�), a monoid homomorphism hom from ([A],++) to (M ,�),
a semiring (S ,⊕,⊗), a semiring homomorphism aggregate from (*[A]+,],×++)
to (S ,⊕,⊗), a function ok : M → Bool, and a polymorphic semiring generator
generate, the following equation holds:

aggregate ◦ filter (ok ◦ hom) ◦ generate],×++ (λx → *[x]+)

= postprocessM ok ◦ generate⊕M ,⊗M
(λx → aggregateM *[x]+)

Proof. Combining Theorems 1 and 2.

Filter-embedding Semiring Fusion is not restricted to parallel algorithms. It can
be used to calculate efficient programs from specifications that use arbitrary
polymorphic semiring generators.

It is worth noting that it is possible to remove the finiteness requirement
for monoids and define a lifted semiring of finite mappings of unbounded and
unknown size. We require the finiteness only in order to be able to describe the
complexity of the resulting parallel algorithms more accurately.

If the generator happens to be a list homomorphism, like sublists, then as-
sociativity of list concatenation allows the resulting program to be executed in
parallel by distributing the input list evenly among available processors. The
complexity of a derived program using sublists as generator is linear in the size
of the input list and quadratic in the size of the range M of the homomorphic
predicate because the semiring multiplication of the lifted semiring SM , which is
used to combine all list elements, can be implemented by ranging over M ×M .

6 A More Complex Application

In this section we describe how to use our framework to derive an efficient parallel
implementation for a practical problem in statistics. We further demonstrate how
to extend the derived basic program incrementally.

6.1 Finding a Most Likely Sequence of Hidden States

We now revisit the statistics problem mentioned in Section 1 which is to find
a sequence of hidden states of a probabilistic model that most likely causes a
sequence of observed events. For example, for speech recognition, the acoustic
signal could be the sequence of observed events, and a string of text the sequence
of hidden states.

Given a sequence x = (x1, . . . , xn) of observed events, a set S of states in a
hidden Markov model, probabilities Pyield(xi | zj) of events xi being caused by
states zj ∈ S, and probabilities Ptrans(zi | zj) of states zi appearing immediately
after states zj , the objective is to find a sequence z = (z0, . . . , zn) of hidden
states that is most likely to cause the sequence x of events such that every zi
causes xi for i > 0 and z0 is an initial state. This problem can be formalized by
the following expression.

arg max
z∈Sn+1

(n∏
i=1

Pyield(xi | zi)Ptrans(zi | zi−1)
)

To derive an efficient parallel algorithm to solve this problem, we transform this
expression to fit in our framework.

To eliminate the index i− 1, we let the expression range over pairs of hidden
states in S × S and introduce a predicate trans to restrict the considered lists
of state pairs. Intuitively, trans y is True if and only if the given sequence y of
state pairs describes consecutive transitions

((z0, z1), (z1, z2), . . . , (zn−2, zn−1), (zn−1, zn))

and False otherwise. Introducing the function

prob (x, (s, t)) = Pyield(x | t)Ptrans(t | s)

the expression above can be transformed into the following equivalent expression.

arg max
y∈(S×S)n

trans y=True

(n∏
i=1

prob (xi, yi)
)

In a first step, we specify only the maximum probability in GTA form. We show
how to compute a state sequence corresponding to this probability by using a
different aggregator later.

Representing sequences of states and events as lists, we can write the trans-
formed specification as follows.

maxLikeliness = maxprob ◦
filter (trans ◦map (λ(x , (s, t))→ (s, t))) ◦
assignTrans],×++ (λx → *[x]+)

The polymorphic semiring generator assignTrans⊕,⊗ is defined as the unique
monoid homomorphism from ([X],++) to the multiplicative monoid (T ,⊗) of
an arbitrary semiring (T ,⊕,⊗) that satisfies

assignTrans⊕,⊗ f [x] = reduce⊕ [f (x , (s, t)) | s ← S , t ← S]

Here, reduce⊕ is a monoid homomorphism from ([T],++) to (T ,⊕) that satisfies
reduce⊕ [x] = x . Intuitively, assignTrans],×++ (λx → *[x]+) produces a bag of
event sequences where all possible combinations of state transitions are attached.

The predicate trans is defined as not ◦ (� ≡) ◦ reduce� where reduce� is a
monoid homomorphism from ([S×S],++) to the finite monoid ((S×S)�, �) and
(S × S)� is (S × S)∪{ı�,�}. Here, � is a zero of � and

(s, t) � (u, v) = if t ≡ u then (s, v) else �

Intuitively, reduce� returns the boundaries of a given sequence of state transitions
if they are consecutive (ı� if the sequence is empty) and � otherwise.

The aggregator maxprob is the unique semiring homomorphism from (*[X ×
(S × S)]+,],×++) to ([0, 1], ↑, ∗)4 that satisfies

maxprob *[(x , (s, t))]+ = prob (x , (s, t))

Intuitively, it computes all total probabilities of state sequences causing the
observed event sequence by multiplying the individual probabilities given by
prob and then computes the maximum of all total probabilities.

The range of reduce� has size |S|2 +2, thus, applying Theorem 3 to the spec-
ification of maxLikeliness yields an implementation with the total cost O(n|S|4)
if n denotes the length of an input event sequence. As assignTrans is a monoid
homomorphism we can execute it in parallel, say using p processors, which leads
to the run time O((log p + n

p)|S|4). For a given probabilistic model, where S is
fixed, the result is a linear-time parallel algorithm. This is in contrast to the
specification which would generate an intermediate result of size |S|2n. Interest-
ingly, the derived program is equivalent to a program obtained by parallelizing
the Viterbi algorithm [12,13] using matrix multiplication over a semiring [21].

Computing Sequences of States We can compute both the maximum prob-
ability and the corresponding state sequences using an alternative aggregator
maxprobSeq which can replace maxprob above and is characterized by

maxprobSeq *[(x , (s, t))]+ = (prob (x , (s, t)), *[t]+)

4 To avoid confusion, note that [0, 1] is the unit interval, that is, the set of all real
numbers x such that 0 ≤ x ≤ 1, not the list of the two elements.

The result is an element in the semiring ([0, 1]×*[S]+, ↑′, ∗′) where the identities
of ↑′ and ∗′ are (0, *+) and (1, *[]+), respectively, and the semiring operations are
defined as follows:

(a, x) ↑′ (b, y) = if a > b then (a, x) else if a < b then (b, y) else (a, x] y)
(a, x) ∗′ (b, y) = (a ∗ b, x ×++ y)

The bag in the second component of the result contains all most likely sequences.
In practice, we may use non-deterministic choice to compute one of them, though
operators with non-deterministic choice do not satisfy the semiring laws, so the
specification and the implementation might pick different results.

6.2 Incremental Refinement

By using Theorem 2 multiple times, it is possible to implement specifications
with multiple filters, not only one.

For example, we can compute the most likely sequence of hidden states sat-
isfying certain conditions, such as “state s is used exactly five times,” or “state
t does not appear anywhere after state s.” Our framework guarantees an effi-
cient implementation also for these restricted problems if the conditions can be
defined by a homomorphic predicate.

For the first condition we use the monoid homomorphism countw p into
(Mw,+w) characterized by countw p [x] = if p x then 1 else 0. It computes the
number of list elements that satisfy the given predicate p. Based on countw we
can define the predicate fixedTimes which only allows sequences of states that
contain a given state s exactly w times:

fixedTimes s w = (w ≡) ◦ countw (λ(x , (t , u))→ s ≡ u)

To check the second condition whether a state t occurs anywhere after a state
s we can define a monoid homomorphism after s t into ((Bool ×Bool)�, ?) that
returns a pair of Booleans that indicate whether the argument list contains the
states s and t , or � if t occurs anywhere after s.5 Here, after is characterized by

after s t [(x , (u, v))] = (s ≡ v , t ≡ v),

� is a zero of ? and (s1, t1) ? (s2, t2) = if s1 ∧ t2 then � else (s1 | s2, t1 | t2).
Based on after we can express a test which only allows sequences of states that
do not contain a given state t after s as not ◦ (� ≡) ◦ after s t .

Since both homomorphisms have finite ranges, we can get linear-time parallel
algorithms for the restricted problems. We can even combine both predicates or
add similar conditions such as “state s is used more than k times,” or “state s
is used at most k times” and still get an efficient parallel implementation.

In general, the most difficult task for programmers specifying GTA algo-
rithms is the design of predicates for filtering, while basic generators and aggre-
gators can be reused for many problems. To guarantee the efficiency of programs

5 (Bool × Bool)� = (Bool × Bool)∪{�} and ı? = (False,False).

derived by our calculation theorems, a user has to design a predicate based on
a finite monoid. One approach to design such a predicate is to use a regular ex-
pression or monadic second order logic expression [25], relying on the fact that a
finite monoid can be derived from a finite automaton. For example, an additional
condition ”we cannot choose items K and J at the same time” to the knapsack
problem can be specified by a regular expression (. ∗ K. ∗ J. ∗ |. ∗ J. ∗ K.∗) com-
posed with the negation function not.

7 Related Work

The research on parallelization via derivation of list homomorphisms has gained
great interest [5, 11,22]. The main approaches include the third homomorphism
theorem based method [10, 20], function composition based method [4, 7, 14],
and matrix multiplication based method [21]. Our work is a continued effort in
this direction, giving a new approach based on semiring homomorphisms, which
is in sharp contrast to the existing work based on monoid homomorphisms. By
introducing bags of lists as well as semirings and the GTA form, our method eases
defining effectively-parallelizable specifications for practical problems such as the
knapsack problem, the discussed statistical problems, and querying problems,
because the GTA form with bag of lists is a natural form of specifications for
these combinatorial problems. Basically, specifications of these problems are too
complex to be handled by the mentioned previous approaches. The previous work
cannot directly help users to solve these problems, because it requires users to
make parallelizable sequential specifications that are almost equivalent to the
efficient programs our proposed method derives. However, previous approaches
are still useful to build a parallelizable GTA specification which requires its
components (generators and predicates) to be parallel programs.

There has been a lot of work about using MapReduce to parallelize various
kinds of problems [17]. Some formal work has been devoted to the study of a
computation model of MapReduce (compared to the PRAM model of compu-
tation) [16]. However, little work has been done on systematic construction of
MapReduce programs. We tackle this problem via semiring homomorphisms.

Our shortcut fusion theorem for semiring fusion is much related to the known
shortcut deforestation [8, 23] which is based on a free theorem [26] and is prac-
tically useful for optimization of sequential programs. Different from the tradi-
tional shortcut deforestation focusing on the data constructors of the interme-
diate data structure that are passed from one function to another, our shortcut
fusion focuses on the semiring operations in the intermediate data structure. It
is this semiring structure that allows for flexible rearrangement of computation
for efficient parallel execution.

Goodman [9] extended the CYK parsing algorithm by substituting various
semirings for the Boolean semiring, so that one can reuse the algorithm for
various computations such as counting the number of parsings, computing the
probability of generating the given string, and finding the best k-parsing. We
can reuse his semirings in our GTA form for computing similar variations.

8 Conclusion

We propose a calculation-based framework for the systematic development of
efficient MapReduce programs in the form of GTA algorithms. The core of the
framework consists of two calculation theorems for semiring fusion and filter
embedding. Semiring fusion connects a specification in GTA form and an effi-
cient implementation by a free theorem, while filter embedding transforms the
composition of a semiring homomorphism and a test into another semiring ho-
momorphism which enables incremental development of parallel algorithms. Our
approach allows to develop efficient parallel algorithms by combining simpler ho-
momorphisms (for generation, testing, and aggregation) into more complex ones,
which is easier than defining the efficient parallel algorithms directly. In contrast
to existing approaches, our theorems allow to modify an efficient algorithm by
adding homomorphic filters in the “naive world” which is easier than modifying
it in the “efficient world”. Our new framework is not only theoretically interest-
ing, but also practically significant in solving nontrivial problems.

For example, we have shown how to derive an efficient parallel implementa-
tion of a known statistics problem and found that it is equivalent to an existing
algorithm for the same problem. This result shows that our approach gener-
alizes existing techniques and provides a common framework to express them.
We expect that our approach can be applied to typical “big-data” problems,
like finding patterns in historical financial data, and plan to investigate such
applications as future work.

Moreover, we plan to implement the developed programming theory as a do-
main specific language or a library, for example upon Hadoop [27], so that typical
MapReduce problems can be tackled using our GTA approach. Our theorems
can be easily mechanized because of their simple calculational form.

References

1. Bird, R.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic of Pro-
gramming and Calculi of Discrete Design. pp. 5–42. Springer-Verlag (1987)

2. Bird, R.: Introduction to Functional Programming using Haskell. Prentice Hall
(1998)

3. Bird, R., de Moor, O.: Algebras of Programming. Prentice Hall (1996)
4. Chin, W.N., Khoo, S.C., Hu, Z., Takeichi, M.: Deriving parallel codes via invariants.

In: Static Analysis, 7th International Symposium, SAS 2000. LNCS, vol. 1824, pp.
75–94. Springer (2000)

5. Cole, M.: Parallel programming with list homomorphisms. Parallel Processing Let-
ters 5(2), 191–203 (1995)

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51, 107–113 (2008)

7. Fisher, A.L., Ghuloum, A.M.: Parallelizing complex scans and reductions. In: Pro-
ceedings of the ACM SIGPLAN 1994 conference on Programming language design
and implementation (PLDI ’94). pp. 135–146. ACM (1994)

8. Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In:
Conference on Functional Programming Languages and Computer Architecture.
pp. 223–232 (1993)

9. Goodman, J.: Semiring parsing. Computational Linguistics 25, 573–605 (1999)
10. Gorlatch, S.: Systematic efficient parallelization of scan and other list homo-

morphisms. In: Euro-Par ’96 Parallel Processing. LNCS, vol. 1124, pp. 401–408.
Springer (1996)

11. Grant-Duff, Z., Harrison, P.: Parallelism via homomorphism. Parallel Processing
Letters 6(2), 279–295 (1996)

12. He, Y.: Extended viterbi algorithm for second order hidden markov process. In: 9th
International Conference on Pattern Recognition. pp. 718–720 vol.2. IEEE Press
(1988)

13. Ho, T.J., Chen, B.S.: Novel extended viterbi-based multiple-model algorithms for
state estimation of discrete-time systems with markov jump parameters. IEEE
Transactions on Signal Processing 54(2), 393–404 (2006)

14. Hu, Z., Takeichi, M., Chin, W.N.: Parallelization in calculational forms. In: 25th
ACM Symposium on Principles of Programming Languages (POPL’98). pp. 316–
328. ACM Press, San Diego, California, USA (1998)

15. Hu, Z., Yokoyama, T., Takeichi, M.: Program optimization and transformation in
calculational form. In: Summer School on Generative and Transformational Tech-
niques in Software Engineering (GTTSE 2005) (2005)

16. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce.
In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms. pp. 938–948. SODA ’10, SIAM (2010)

17. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and
Claypool Publishers (2010)

18. List, M.A.P.: http://www.mendeley.com/groups/1058401/mapreduce-
applications/papers/ (2011)

19. Liu, Y., Hu, Z., Matsuzaki, K.: Towards systematic parallel programming over
mapreduce. In: Euro-Par 2011 Parallel Processing. LNCS, vol. 6853. Springer
(2011)

20. Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Automatic inver-
sion generates divide-and-conquer parallel programs. In: ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation (PLDI ’07).
pp. 146–155. ACM Press (2007)

21. Sato, S., Iwasaki, H.: Automatic parallelization via matrix multiplication. In: Pro-
ceedings of the 32nd ACM SIGPLAN conference on Programming language design
and implementation (PLDI ’11). pp. 470–479. ACM (2011)

22. Skillicorn, D.B.: The Bird-Meertens Formalism as a Parallel Model. In: NATO
ARW “Software for Parallel Computation” (92)

23. Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Proc. Con-
ference on Functional Programming Languages and Computer Architecture. pp.
306–313. La Jolla, California (1995)

24. Takano, A., Hu, Z., Takeichi, M.: Program transformation in calculational form.
ACM Computing Surveys 30(3) (1998)

25. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics, pp. 133–192. Elsevier and MIT
Press (1990)

26. Wadler, P.: Theorems for free! In: Proceedings of the fourth international confer-
ence on Functional programming languages and computer architecture. pp. 347–
359. FPCA ’89, ACM (1989)

27. White, T.: Hadoop: The Definitive Guide. O’Reilly Media (2009)

