
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Generator-based GG Fortress Library

Kento EMOTO, Zhenjiang HU, Kazuhiko KAKEHI,
Kiminori MATSUZAKI and Masato TAKEICHI

METR 2008–16 March 2008

DEPARTMENT OF MATHEMATICAL INFORMATICS

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO

BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Generator-based GG Fortress Library

Kento Emoto†, Zhenjiang Hu†, Kazuhiko Kakehi‡,

Kiminori Matsuzaki† and Masato Takeichi†

†Graduate School of Information Science and Technology, University of Tokyo
‡Division of University Corporate Relations (DUCR), University of Tokyo

{emoto,kmatsu,kaz}@ipl.t.u-tokyo.ac.jp
{hu,takeichi}@mist.i.u-tokyo.ac.jp

Abstract

This report proposes a new library on Fortress to deal with computation with complex
dependency such as prefix sums, which cannot be efficiently dealt with by simple comprehen-
sions or generator-reduction patterns. The library provides a set of generator-of-generators
that abstract generation of nested data structures, for allowing users to write their programs
in an easy and uniform way. The library also provides an automatic optimization mechanism
that dispatches correct and efficient implementation to those user programs. Thus, users
can easily make correct parallel programs without losing efficiency. The proposed library
is implemented on Fortress, and techniques used here can be reused for other libraries on
Fortress.

1 Introduction

Consider the following simple problem “Maximum Prefix Sum Problem.”

Given a sequence of numbers, find the maximum sum of all prefix segments of the sequence.

For example, the maximum prefix sum of a sequence [2,−1, 3,−2, 1] is 4, because its prefix
segments are [2], [2,−1], [2,−1, 3], [2,−1, 3,−2] and [2,−1, 3,−2, 1], and their sums are 2, 1, 4,
2 and 3, respectively. This problem is an instance of the following computation often seen in
various scientific computations.

∑
⊕

i∈[1,...,n]

∑
⊗

j∈f(i)

xj

Here, f(i) returns some region depending on i, and
∑

⊕ takes a summation with associative bi-
nary operator ⊕ instead of the usual plus operator +. Clearly, “Maximum Prefix Sum Problem”
can be written in this form with maximum operator ↑ and the usual plus operator +:

∑
↑

i∈[1,2,3,4,5]

∑
+

j∈[1,...,i]

xj

= (x1) ↑ (x1 + x2) ↑ (x1 + x2 + x3) ↑ (x1 + x2 + x3 + x4) ↑ (x1 + x2 + x3 + x4 + x5) .

Here, the dependency of j to i is a prefix [1, . . . , i].
This problem can be solved straightforwardly in Fortress. One way is to use two for-loops

in Fortress [ACH+] as follows.

1

m : Z32 = −infinity

for i← 0 #x.size() do
s: Z32 = 0
for j ← 0 # (i + 1) do
atomic s += xj

end

atomic m := m MAX s

end

Another way is to use comprehensions to take the maximum and summations:

BIG MAX [
∑

[xj | j ← 0 # (i + 1)] | i← 0 #x.size()]

In both cases, the naive program is straightforward implementation of the problem statement,
which is very easy to write and understand.

However, the above naive programs are inefficient. In fact, the following efficient implemen-
tation1 using only one loop is known for “Maximum Prefix Sum Problem,” while naive programs
use two loops.

opr MPS(a, b) = do

(m1, s1) = a

(m2, s2) = b

(m1 MAX (s1 + m2), s1 + s2)
end

(r1, r2) = BIG MPS [(a, a) | a← x]
r1

This program uses the dependency between prefixes and distributivity of the plus operator +
over the maximum operator ↑, to compute the solution in one loop. Moreover, since associativity
of the binary operator MPS used in this efficient program is guaranteed by the distributivity,
this efficient program is a correct parallel program.

However, there exist some problems in asking users to write this efficient program.

1. It is difficult to understand what the efficient program computes in the loop. This difficulty
results in increased occurrence of bugs in the program, so maintenance of this program
becomes difficult and productivity gets lower.

2. It is difficult to change the efficient program to solve a slightly different problem. For
example, consider a problem to find the maximum sum of prefixes in which numbers are
ordered ascendingly. It is not clear how a user should change the efficient program to
solve this slightly changed problem, since the resulting program requires associativity of
a binary operator used in the program for parallel computation.

3. It is a heavy burden for a user to know such efficient implementation with its applicable
condition, since there are many variants of implementation for a class of problems. So,
when a user uses efficient implementation for his/her problem, the implementation may be
neither the best implementation nor applicable to the problem by lacking some required
condition.

Thus, asking users to write complicated efficient programs increases burdens on users and
decreases productivity. The best way is to let users write clear programs, and programming
environments dispatch the best efficient implementation for user programs.

Writing clear programs, on the other hand, needs abstraction mechanism for flexibility. The
naive programs shown above are not flexible enough. For example, to find the maximum sum of
any segments instead of prefix segments, a user has to add another for-loop to the naive program.

1The definition of BIG MPS is omitted here for readability. Please refer to Figure 2-(c) for its definition.

2

This is not a small change. Moreover, to find the maximum sum of any subsequences, a user
has to change the program drastically because generation of all subsequences is difficult to write
with a finite number of for-loops. Those changes of the structure of programs are expected to be
hidden from users. Thus, an interface abstracting those generations of nested data structures
is required for describing programs uniformly and for development of clear programs.

The ideal solution to solve these problems is to provide both an interface to describe pro-
grams easily and uniformly by abstracting generation of nested data structures, and a pro-
gramming environment that dispatches the best and correct implementation to user programs
written with the interface.

We propose GG library (GG stands for Generator-of-Generators) to achieve the ideal solu-
tion. For example, using our library, a user can write a naive program for “Maximum Prefix
Sum Problem” clearly as follows2.

BIG MAX [
∑

[a | a← y] | y ← inits x]

This program is very clear, since generation of prefix segments is abstracted by GGenerator inits
3 (inits stands for initial segments). A user can easily change the program to find the maximum
sum of any segments by replacing inits with another generator-of-generators (GGenerator for
short) segs 4 that abstracts generation of all segments.

BIG MAX [
∑

[a | a← y] | y ← segs x]

Also, a user can easily change the program to find the maximum sum of ascending prefixes by
adding predicate ascending 5.

BIG MAX [
∑

[a | a← y] | y ← inits x, ascending(y)]

Once written with our library, those programs are provided with the best correct implementation
in the collection of implementation in the library. So, the efficient implementation shown above
is dispatched to the first program written with GGeneratorinits .

Features of our library are shown below.

• Support for easy program development by generate-and-test specification
Users can write naive generate-and-test programs easily and uniformly with GGenera-

tors (generator-of-generators) that abstract generation of nested data structures. This
generate-and-test specification covers wide range of problems, and users can make their
programs by changing parameters of the specification, such as GGenerators, binary oper-
ators, functions and predicates to filter elements. All examples shown above are covered
by this specification.

• Automatic optimization by dispatching correct and efficient implementation
The library automatically dispatches efficient implementation to a user program written
with GGenerators based on a collection of theories. Each GGenerator has its collection of
theories and accompanying efficient implementations. If the library detects that the given
user program satisfies conditions to apply some efficient implementation given by theories,
then the library dispatches the efficient implementation to the user program. Properties
of user programs such as distributivity of operators should be explicitly given by users
when user-defined functions and operators are used in their programs.

2Current implementation of GG library handles List that is denoted by 〈| . . . |〉. But we use the notation [. . .]
in this report for readability.

3For example, inits [2,−1, 3,−2, 1] results in [[2], [2,−1], [2,−1, 3], [2,−1, 3,−2], [2,−1, 3,−2, 1]]
4For example, segs [2,−1, 3,−2, 1] results in [[2], [2,−1], [2,−1, 3], [2,−1, 3,−2], [2,−1, 3,−2, 1], [−1], [−1, 3],

[−1, 3,−2], [−1, 3,−2, 1], [3], [3,−2], [3,−2, 1], [−2], [−2, 1], [1]]
5For example, ascending [1, 2, 5] result in true, but ascending [1, 5, 2] results in false

3

• Growing Library
The library grows in two directions: expressiveness and optimization power. The expres-
siveness of the library easily grows by extending the specification supported by the library.
For example, adding a new GGenerator we can extend the specification to cover a wider
range of problems. The power of optimization of the library easily grows by adding new
knowledge of theories.

The library supports easy development of correct and efficient parallel programs, and the library
itself can grow up to cover a wider range of problems and to achieve better optimization power.
These points match to the spirit of Fortress.

The rest of this report is organized as follows. Section 2 shows the structure and the behavior
of our GG library. Section 3 shows the implementation details of the mechanism of GG library.
Section 4 shows how GG library grows. Section 5 concludes this report.

2 Structure and Behavior of GG Library

In this section, we will explain the structure and the behavior of our library to dispatch efficient
implementation to a user program. Details of implementation techniques used in the library
are shown in Section 3 and Section 4.

2.1 Structure of GG Library

Figure 1 illustrates the structure of our GG Library. There are two kinds of collections in the
library. One is a collection of GGenerators that are used to describe specification of problems.
This collection of GGenerators provides an interface for easy and uniform description of user
programs. Each GGenerator abstracts generation of a nested data structure. For example,
generation of initial segments is abstracted by GGenerator inits , and generation of all segments
is abstracted by GGenerator segs .

The other is a collection of theories and accompanying efficient implementations dispatched
to user programs. Basically, each GGenerator has its own collection of theories and efficient
implementations. Given a user program written with GGenerators, the library checks applicable
conditions of theories against the given program, and then if the program satisfies the condition,
the library dispatches the accompanying efficient implementation. The collection includes a
default implementation that is dispatched when no efficient implementation can be used for the
given user program.

Besides those two specific collections, the library has a collection of traits to describe math-
ematical properties of user programs. Some of them have already been defined in the Fortress
specification [ACH+]. We add extra traits in our library to describe mathematical properties
not given in the Fortress specification. Those traits are used to determine whether a given user
program satisfies applicable conditions of theories.

Figure 1 also shows how GG library grows in two directions: expressiveness and optimization
power. The expressiveness of the library grows by adding new GGenerators to support a wider
range of problem specifications. The power of optimization grows by adding new knowledge of
theories to dispatch more efficient implementation to more user programs.

2.2 Behavior of GG Library

Figure 2 shows the behavior of our GG Library with concrete examples for a program to solve
“Maximum Prefix Sum Problem.” The behavior of GG Library for dispatching implementation
to a user program is separated into two phases.

4

Figure 1: Structure of GG library

Phase 1. Desugaring a user program into invocations of method generate2 of GGenerators

In the first phase, the library desugars a user program written with for-loops or com-
prehensions into invocations of method generate2 of GGenerators used in the program.
Method generate2 is the most important method of trait GGenerator, which is the
base trait of all GGenerators, to perform nested reductions on generated nested data
structures. Basically, users do not need to invoke method generate2 directly to per-
form nested reductions. They have freedom to write programs for nested reductions
with comprehensions or for-loops.

Figure 2-(a) shows an example of such user programs written with comprehensions.
This program uses GGenerator inits to generate prefix segments of the input sequence
x . The inner reduction of the nested reduction takes a summation of y that is a
generated prefix of x . The outer reduction takes the maximum of those summations.

The desugaring process transforms the user program (Figure 2-(a)) into the program
shown in Figure 2-(b). In the desugared program, nested reductions written with com-
prehensions are replaced with an invocation of method generate2 of GGenerator inits .
Two reduction operators + and MAX used in the original comprehensions are given
to the method generate2 as its arguments enclosed in objects: SumReductionZZ32
and MaxReductionZZ32. The other arguments of the method generate2 are default
values such as IdFunction (the identity function) and TrueListPredicate (the predicate
that is always true).

Phase 2. Dispatching implementation within the invocation of method generate2

After the desugaring process, the library dispatches implementation within the in-
vocation of method generate2 of a GGenerator. In this phase, the library checks
whether properties of the given arguments of method generate2 satisfy the applicable
condition of each theory of the GGenerator. And then, if it is found that the applica-
ble condition is satisfied, the library performs computation of the nested reductions
by corresponding efficient implementation with the given arguments. Otherwise, the
library will use the default naive implementation for the nested reductions.

To tell properties of the arguments to the library, the operator/predicate/function
given to the method generate2 should extend a set of suitable traits provided by the
library or Fortress when it has some mathematical properties. For example, the usual

5

BIG MAX [
∑

[a | a← y] | y ← inits x]

(a) User program of nested reductions with comprehensions

mis xs = inits(x).generate2[[MaxReductionZZ32, IdFunction[[Z32]],
SumReductionZZ32, IdFunction[[Z32]],
TrueListPredicate[[Z32]], Z32, Z32]]

(MaxReductionZZ32, IdFunction[[Z32]],
SumReductionZZ32, IdFunction[[Z32]],
TrueListPredicate[[Z32]])

(b) Desugared program

opr MPS(a, b) = do

(m1, s1) = a

(m2, s2) = b

(m1 MAX (s1 + m2), s1 + s2)
end

object MPSReduction extends Reduction[[(Number,Number)]]
empty(): (Number,Number) = (−infinity , 0)
join(a : (Number,Number), b : (Number,Number)): (Number,Number) = a MPS b

end

opr BIG MPS [[E]](g : (Reduction[[E]], E → E)→ E):E = g(MPSReduction, fn a⇒ a)

(r1, r2) = BIG MPS [(a, a) | a← x]
r1

(c) Efficient implementation for distributive operators

Figure 2: Two-phase behavior of GG library (with examples for “Maximum Prefix Sum”)

plus operator + has distributivity over the maximum operator MAX , so SumReduction
should extend LeftDistributiveOver[[MaxReduction]] to tell its distributivity. Since
properties of the given arguments are specified by traits, checking of applicable con-
ditions of theories are performed by checking types of the arguments. Basically, the
checking of types is realized by overloading or typecase .

For example, for the desugared program shown in Figure 2-(b), the library checks
whether the reduction operator has distributivity. In this case, the library finds
SumReductionZZ32 (operator +) distributes over MaxReductionZZ32 (operator MAX),
since SumReductionZZ32 extends trait LeftDistributiveOver[[MaxReductionZZ32]] to
indicate its distributivity. Thus, the library uses the efficient implementation shown
in Figure 2-(c) to perform the nested reduction of the program. Conversely, if the ob-
ject SumReduction did not extend trait LeftDistributiveOver[[MaxReductionZZ32]],
the library would use the naive implementation, shown in the previous section, as the
default implementation for the nested reduction.

6

3 Implementation Details of GG Library

In this section, we will explain the details of implementation of GG Library. First, we will
explain trait GGenerator and the dispatching process that are the core of GG Library. After
that, we will explain the desugaring process.

3.1 Trait GGenerator

Trait GGenerator is the base trait of all GGenerators. Figure 3 shows the definition of trait
GGenerator (the figure contains only essential methods). Currently, GGenerator[[E]] is defined
as a subtrait of trait List[[List[[E]]]], which is a subtrait of Fortress’s Generator shown in Figure 4.
The core of trait Generator is method generate that generates elements of type E , passes each
of them to the function body , and combines the results using the reduction r .

Trait GGenerator extends the existing Generator as follows. First, GGenerator itself can
work as Generator to generate elements of type List[[E]], since GGenerator is a subtrait of
Generator. Next, method generate2 of GGenerator is an extension of method generate of
Generator. Method generate2 takes two pairs of operators and body functions, namely the
pair (r , f) and the pair (mr ,mf), for nested reductions so that it can use relationship between
the given pairs to perform the reductions efficiently, while generate takes a pair of an operator
and a function to perform a single reduction, performing nested reductions individually. Of
course, if the nested reductions use the same operator for each reduction, both generate2 and
nested use of generate result in the same computation.

3.1.1 Methods of Trait GGenerator

Figure 3 defines trait GGenerator that has five methods.
Getter list () returns the original list given to the GGenerator. Basically, values in generated

nested lists are taken from this original list.
Getter defaultImplementation () returns implementation to generate the actual nested data

structures. Basically, an efficient implementation does not generate such actual nested data
structures. Implementation given by defaultImplementation is used to perform the nested
reductions naively as the default of dispatching.

Method generate2 is the most important method of trait GGenerator that is an inter-
face of dispatching implementation to the nested reductions. Meaning of an invocation of
generate2 (r , f ,mr ,mf , p) of GGenerator gg is the same as the following nested comprehension
with nested reductions.

r [f (mr [mf y | y ← ys]) | ys ← gg xs, p ys]

GGenerator gg generates a nested data structure, and its element (basically a subsequence of
the input xs) is bound to variable ys . Predicate p is used to filter the generated element ys .
Function mf is applied to each element of ys passed the filtering, and a reduction with mr is
taken on the result. And then, function f is applied for each result of the inner reduction with
mr , and finally reduction with r is taken on those results. Straightforward implementation of
the computation explained above is seen in method defaultgeneration explained below.

Method defaultgeneration performs the default naive nested reductions on the actual nested
data structure. Arguments are the same as method generate2 explained above. The actual
nested data structure is generated by actualList () explained later. Against the generated nested
data structure, it performs filtering with the given predicate p by method filter of List. Judg-
ment by the predicate p is denoted by p.judge(e). After that, it performs the nested reductions
with two invocations of method generate of Generators. The inner reduction is performed
with the given reduction mr and function mf . Application of the function mf is denoted
by mf .apply(a). The outer reduction is performed with the given reduction r and function f

7

(∗ base trait of generator-of-generators ∗)
trait GGenerator[[E]] extends List[[List[[E]]]]
getter list() : List[[E]]
getter defaultImplementation() : List[[E]]→ List[[List[[E]]]]

generate2[[R,F,M,N, P, Z, Y]](r : R, f : F,mr : M,mf : N, p : P) : Z =
defaultgeneration[[R,F,M,N, P, Z, Y]](r, f,mr ,mf , p)

defaultgeneration[[R,F,M,N, P, Z, Y]](r : R, f : F,mr : M,mf : N, p : P) : Z =
actualList().filter(fn (e : List[[E]]) : Boolean⇒ p.judge(e)).

generate[[Z]](r, (fn a⇒ f.apply(a))◦
(fn (x)⇒ x.generate[[Y]](mr , (fn a⇒ mf .apply(a)))))

actualList() : List[[List[[E]]]] = defaultImplementation()(list())
end

Figure 3: The base trait of GGenerators

trait Generator[[E]] excludes {Number }
generate[[R]](r: Reduction[[R]], body :E → R):R

end

Figure 4: The core of trait Generator in Fortress

composed with the inner reduction. The computation by method defaultgeneration is the same
as a program of nested comprehensions desugared by the usual desugaring process of Fortress.

Method acutalList () generates the actual nested data structure by the implementation given
by defaultImplementation (). This actual list is used in some methods, such as taking the head
of the generated nested data structure, as well as the default naive nested reductions.

It is worth mentioning about type variables used in method generate2 . There are many
type variables in the method and they have no restrictions. The reason of a number of type
variables is as follows. Method generate2 wants to know complete types of the arguments and
bind those types to variables, since the dispatching process needs to check properties of the
arguments by their types to dispatch efficient implementation. The reason of no restriction on
types is basically the limitation of the current interpreter, which does not completely support
where-clause. When where-clause is supported in the future, we can add restriction on type
variables like shown below.

generate2[[R,F,M,N, P, Z, Y]](r : R, f : F,mr : M,mf : N, p : P) : Z

where {R extends Reduction[[Z]], F extends Function[[Y,Z]],
M extends Reduction[[Y]], N extends Function[[E, Y]],
P extends ListPredicate[[E]]}

= defaultgeneration[[R,F,M,N, P, Z, Y]](r, f,mr ,mf , p)

3.1.2 An Example GGenerator inits

As a concrete example of GGenerators, Figure 5 gives the definition of GGenerator inits as
object InitsGenerator.

Object InitsGenerator takes the original list as its argument, and getter list() returns
the given original list. Default implementation of GGenerator inits is defined outside ob-
ject InitsGenerator as function initsImpl shown below. Method generate2 invokes function
dispatching (explained in the next section) to dispatch suitable implementation to a user pro-
gram specified by the given arguments. If there is no efficient implementation available for the
arguments, the default implementation explained below will be used.

8

object InitsGenerator[[E]](arglist : List[[E]]) extends GGenerator[[E]]
getter list() : List[[E]] = arglist

getter defaultImplementation() : List[[E]]→ List[[List[[E]]]] = initsImpl [[E]]
generate2[[R,F,M,N, P, Z, Y]](r : R, f : F,mr : M,mf : N, p : P) : Z

= do

dispatching [[InitsGenerator[[E]], R, F,M,N, P, Z, Y,E]](self, r, f,mr ,mf , p)
end

end

initsImpl [[E]](x : List[[E]]) : List[[List[[E]]]] = do

x.generate[[List[[List[[E]]]]]](InitsReduction[[E]], fn (a)⇒ singleton[[List[[E]]]](singleton[[E]](a)))
end

object InitsReduction[[E]] extends Reduction[[List[[List[[E]]]]]]
empty(): List[[List[[E]]]] = emptyList [[List[[E]]]]()
join(a : List[[List[[E]]]], b : List[[List[[E]]]]): List[[List[[E]]]] = do

l = a.right().generate[[List[[E]]]](Concat[[E]], fn (x)⇒ x);
a.append(b.map[[List[[E]]]](fn (x)⇒ l.append(x)));

end

end

inits[[E]](x : List[[E]]) : GGenerator[[E]] = InitsGenerator[[E]](x)

Figure 5: Implementation of GGenerator inits

Function initsImpl generates a list of prefix (initial) segments using method generate of the
given list with reduction object InitsReduction shown below.

InitsReduction takes two lists of initial segments (a and b in the code), and returns a list
of initial segments of the concatenated list. Suppose a is a list of initial segments of a list x ,
and b is that of a list y . InitsReduction makes a list of initial segments of the concatenated
list x .append(y) from a and b as follows. Initial segments of x are also initial segments of
the concatenated list. So, all elements in a remain in the result. Each initial segment of y

needs to be concatenated with x to become an initial segment of the concatenated list. So,
InitsReduction maps a function to concatenate the last (rightmost) element of a (x is the last
element of a) to each element of b so that it can become an initial segment of the concatenated
list.

Finally, function inits is defined for shortcuts to constructing an instance of InitsGenerator.

3.2 Dispatching Efficient Implementation

In this section, we first introduce an efficient implementation of the nested reduction for GGen-
erator inits . After that, we explain dispatching process to execute a user program with the
efficient implementation.

3.2.1 Preparing Efficient Implementation

We introduce a theorem that gives us efficient implementation of nested reductions for GGener-
ator inits . The theorem says the nested reductions with two operators can be performed by one
reduction with another new operator if the operator of the inner reduction has distributivity
over the operator of the outer reduction.

Theorem 1 (Maximum Initial-segment Sum) Provided that ⊕ is associative, and ⊗ is

9

efficientImplTrueDistributive[[R,F,M,N, P, Z, Y]]
(r : R, f : IdFunction[[Y]],
mr : DistributiveOver[[R]],mf : IdFunction[[E]],
p : TrueListPredicate[[E]]) = do

join(x, y) = do

(i1, s1) = x

(i2, s2) = y

(r.join(i1,mr .join(s1, i2)),mr .join(s1, s2))
end

zero = (r.empty(),mr .empty())

(r1, r2) = list().generate[[(Z,Z)]](MapReduceReduction[[(Z,Z)]](join, zero), (fn a⇒ (a, a)))
r1

end

Figure 6: Efficient implementation of the nested reductions for GGenerator inits

associative and left-distributive over ⊕, the following equation holds.

⊕
[
⊗

[a | a← y] | y ← initsx] = first (
⊙

[(a, a) | a← x])
where (i1, s1)⊙ (i2, s2) = (i1 ⊕ (s1 ⊗ i2), s1 ⊗ s2)

first (a, b) = a

Please refer to the complementary report [EHK+08] for proof of this theorem and theoretical
backgrounds.

The new reduction with the new operator (⊙) is taken on pairs of values. Each pair records
the result of the nested reductions of an input and the result of the inner reduction on the input,
which is used to reuse partial results effectively in the divide-and-conquer parallel computation.
For example, when we apply this theorem to the program for “Maximum Prefix Sum Problem,”
the first value of a pair is the maximum prefix sum of an input sequence, and the second value
is the summation of the input. The computational cost (work) of the new reduction is O(n) for
an input of length n, while the cost of the naive nested reductions is O(n2). Thus, the use of
the new reduction instead of the naive nested reduction improves efficiency of a user program.

To use the knowledge of the theorem, we have to implement the optimization given by
the theorem. Figure 6 shows the efficient implementation efficientImplTrueDistributive for the
theorem, which should be implemented in object InitsGenerator to be used in dispatching.
The signature of efficientImplTrueDistributive is almost the same as method generate2 of trait
GGenerator. The types of some arguments are restricted to guarantee that the applicable
condition of the theorem is satisfied by the arguments. Basically, restriction on types here is
not necessary because the checking of types are performed before an invocation of this method
in the dispatching shown in the next section. The type restriction in the code is added for
safety.

Function join defined in efficientImplTrueDistributive is straightforward implementation of
the new operator ⊙ given in the theorem. Value zero is the identity of the operator, constructed
from identities of the operators used in the naive nested reductions. The reduction with the
new operator is performed by generate of the original list (list () in the code) stored in the
GGenerator inits . The body function given to generate makes a tuple as shown in the theorem.

Now, we have prepared an efficient implementation for dispatching. The next section shows
how to dispatch this efficient implementation to a user program.

10

dispatching [[G,R, F,M,N, P, Z, Y,E]](g : G, r : R, f : F,mr : M,mf : N, p : P) = do

typecase (g, r, f,mr ,mf , p) of

(InitsGenerator[[E]], R, IdFunction[[Y]],
LeftDistributiveOver[[R]], IdFunction[[E]],TrueListPredicate[[E]])⇒

g.efficientImplTrueDistributive[[R,F,M,N, P, Z, Y]](r, f,mr ,mf , p)

else⇒ do

g.defaultgeneration[[R,F,M,N, P, Z, Y]](r, f,mr ,mf , p)
end

end

end

Figure 7: Dispatching table

3.2.2 Dispatching Table

The dispatching process dispatches efficient implementation given by a theorem to an invocation
of generate2 of a GGenerator, when the arguments satisfy the applicable condition of the
theorem. Basically, checking of applicable conditions of theorems is performed by checking
types of the arguments, since properties of the arguments should be specified by traits.

Figure 7 shows the dispatching table that is the core of the dispatching process. The
dispatching table is defined as function dispatching that checks types of the given arguments
and selects suitable implementation according to the arguments. Function dispatching receives
a GGenerator and arguments given to generate2 of the GGenerator. Each GGenerator should
invoke function dispatching to perform dispatching in generate2 as in Figure 5.

Function dispatching checks types of arguments by typecase of Fortress. Basically, one case
of typecase corresponds to one theorem, and the type constraints correspond to the applicable
condition of the theorem. The default (else) case corresponds to naive implementation of
nested reductions. Figure 7 contains a case for Theorem 1 and the default case. For the default
case, the dispatching table invokes method defaultgeneration of GGenerator g . In the case
for Theorem 1, it checks whether properties of the arguments satisfy the condition by checking
types of the arguments. Since the condition for the theorem is that the inner reduction (mr) has
distributivity over the outer reduction (r), function dispatching checks whether mr extends
trait LeftDistributiveOver[[R]]. Also, function dispatching checks whether f is the identity
function and p is the true-predicate, since the theorem cannot deal with other functions and
predicates. If those conditions on types are satisfied, function dispatching confirms that the
applicable condition of the theorem is satisfied, and it invokes the efficient implementation
efficientImplTrueDistributive of InitsGenerator (shown in the previous section) to perform the
nested reductions of a user program efficiently by the implementation.

Note that every function given to dispatching and generate2 should extend trait Function
shown in Figure 8 to be checked whether the function is the identity function or not. Also note
that every predicate given to dispatching should extend trait ListPredicate shown in Figure 8
to be checked whether the predicate is the true-predicate or not. Basically, a function or a
predicate (a function returning a Boolean value) does not necessarily need to be a trait or an
object in Fortress, since Fortress can handle functions directly. However, to describe properties
of functions by themselves, we require a function to be a trait or an object. Otherwise, we need
an extra argument in generate2 to tell properties of functions.

Summary of dispatching is as follows. Method generate2 of each GGenerator invokes func-
tion dispatching with the GGenerator and its arguments. The typecase in function dispatching

checks whether the given arguments satisfy applicable condition of each theorem by checking
their types. If it confirms that the arguments satisfy the condition, it invokes the corresponding
efficient implementation of the theorem. If no condition is satisfied, the default implementation

11

trait Function[[X,Y]]
apply(x : X) : Y

end

object IdFunction[[X]] extends Function[[X,X]]
apply(x : X) : X = x

end

trait Predicate[[E]]
judge(x : E) : Boolean

end

trait ListPredicate[[E]] extends Predicate[[List[[E]]]]
end

object TrueListPredicate[[E]] extends ListPredicate[[E]]
judge(x : List[[E]]) : Boolean = true

end

Figure 8: Traits for functions and predicates

is used in the default case of the typecase .
To exploit knowledge of a theorem, an implementer has to do two things. One is to im-

plement the optimization given by the theorem in its corresponding GGenerator. The other
is to modify the typecase in function dispatching by adding a new case of type conditions
corresponding to the applicable condition of the theorem, and by adding a code to invoke the
efficient implementation of the GGenerator in the case. Then, nested reductions of a user pro-
gram can be executed with the efficient implementation given by the theorem, if the nested
reduction satisfies the applicable condition of the theorem.

3.3 Desugaring

Currently, desugaring of a user program into invocations of method generate2 of GGenerators
does not completely work. It is very difficult to desugar any expression into generate2 , since it
needs to split an expression into a function and a reduction. Thus, we are planning to desugar
restricted nested comprehensions that can be transformed into a form below.

⊕
[
⊗

[f y | y ← ys] | ys ← gg xs, p ys] (1)

Here, gg is one of GGenerators, p is a predicate, f is a function, and ⊕ and ⊗ are associative
operators. This form is the same computation as the following invocation of generate2 .

gg(x).generate2(BinReduction[[⊕]], IdFunction,BinReduction[[⊗]], f, p)

Here, BinReduction makes a reduction object from an associative binary operator.
We show, with an example, that quite a lot of nested comprehensions can be systematically

desugared into the above form. Consider the next nested comprehension as our example.

↑[+[f(y, b, w) | y ← ys, even y] | ys ← inits xs, ascending ys, b← bs]

This example computes a variant of the maximum prefix sum, in which the maximum is consid-
ered only on ascending prefixes, the summation is taken only on even numbers, and the value
is replaced with f(y, b, w) instead of the number itself (y) at the summation.

Transformation steps with the example program are shown below.

12

Step. 1 Remove guards p x by fusing it with generators x← g xs

There are two occurrences of guards in the example: even y and ascending ys. Fusing
these guards, we can get the following program.

↑[+[f(y, b, w) | y ← filter even ys] | ys ← filterascending (inits xs), b← bs]

This transformation is applicable, when each predicate depends only on a variable in
the left hand side of generators in the same comprehension.

Step. 2 Move depending generations to the edges
If there is depending generations in generators of two comprehensions, move those
depending generation to the edges of comprehensions as follows.

⊕[⊗[e | gs1] | gs2] ⇒ ⊕[⊗[e | y ← fg ys, gs ′1] | gs ′2, ys← fgg xs]

Here, fgg is one of GGenerators with filter, and fg is the identity function or filter. This
transformation is valid if each operator of reductions is commutative and there is no
dependency of gs ′2 to ys.

The example program has a pair of depending generations y ← filter even ys and ys ←
filterascending (inits xs). Since operators used in our example are both commutative,
we can perform this transformation to get the following program.

↑[+[f(y, b, w) | y ← filter even ys] | b← bs, ys ← filterascending (inits xs)]

Here, ys ← filterascending (inits xs) is moved to the edge using commutativity of ↑.

Step. 3 Restructure comprehensions to extract the form
The following is a rule used in this step.

⊕[⊗[e | y ← fg ys, gs ′1] | gs ′2, ys← fgg xs]
⇒⊕[⊕[⊗[⊗[e | gs ′1] | y ← fg ys] | ys← fgg xs] | gs ′2]

This transformation is always valid, since it is a combination of steps used in the usual
desugaring process in Fortress. For readability, the result of this transformation can be
written as the following form.

h(⊕[⊗[f ′(y) | y ← fg ys] | ys← fgg xs])
where h(z) =⊕[z | gs ′2]

f ′(y) =⊗[e | gs ′1]

Here, the argument of h is almost the same as the form (1). The difference can be
eliminated in the following way. If fg is filter q, we introduce another function f ′′(x) =
if q(x) then x else ı⊗, in which ı⊗ is the identity of ⊗. Otherwise, let f ′′ = f ′. If fgg

does not includes filter, we introduce p = true that always returns true. Otherwise, let
p be the predicate of the filter, i.e., fgg xs = filter p (gg xs). Using these f ′′ and p, the
argument of h is now the same as the form (1).

⊕[⊗[f ′′(y) | y ← ys] | ys← gg xs, p ys])

If there is no direct dependency of f ′′ to ys, we can replace this part by an invocation
of method generate2 of gg .

13

Applying the above transformation, we get the following result for the example.

↑[+[f(y, b, w) | y ← filter even ys] | b← bs, ys ← filterascending (inits xs)]

⇒ h(↑[+[f(y, b, w) | y ← filter even ys] | ys ← filterascending (inits xs)])
where h(z) =⊕[z | b← bs]

⇒ h(↑[+[f ′′ y | y ← ys] | ys ← inits xs, ascending ys])
where h(z) =⊕[z | b← bs]

f ′′(z) = if even x then x else 0

Here, the argument of h is the same as the form (1). Since there is no direct dependency
of f ′′ to ys, the part can be replaced with invocation of generate2 of GGenerator inits .

The desugaring transformation shown above has some restrictions on target comprehensions.
For example, Step. 1 requires that each predicate should depend only on a variable in the
left hand side of generators in the same comprehension, Step. 2 requires that the operators
should be commutative and there is no dependency of outer generators to generation of the
GGenerator, and replacement of comprehension with generate2 in Step. 3 requires that there is
no direct dependency of the inner function to generation of the GGenerator. One easy sufficient
restriction for dependencies of generators is that a variable on the left hand side of arrows in
generators is used at most once in the right hand side of arrows in the generators and the body
function. This restriction is often satisfied.

4 Growing Library

This section shows how the library grows in two directions. Also, we will give some experiment
results to demonstrate the power of the library.

Further discussion on generators and theories for efficient implementations is found in the
complementary report [EHK+08].

4.1 Growing in Expressiveness

One directions of growing is extension of the expressiveness to cover a wider range of problems.
This is done by adding a new GGenerator.

For example, we can make a new GGenerator tails that abstracts generation of suffix seg-
ments6, as shown in Figure 9. Behavior of default implementation of tails is similar to that of
inits . The default implementation of tails is given as function tailsImpl that performs a single
reduction with object TailsReduction. The operator of the reduction is almost the same as that
of InitsReduction, except that it concatenates the first element of the second argument to each
element of the first argument. Function tailsImpl is set to the getter defaultImplementation to
be used in method defaultgeneration for the default naive implementation of nested reductions.
Method generate2 invokes function dispatching to make dispatching process work. Arguments
of dispatching are GGenerator tails itself and the given arguments of generate2 . Now, users
can use GGenerator tails to describe their programs for suffix computations. For example, a
program for “Maximum Suffix Sum Problem,” of which objective is to find the maximum sum
of a suffix of an input, is given as follows.

BIG MAX [
∑

[a | a← y] | y ← tails x]

Similarly, we can add another GGenerator segs that abstracts generation of all segments
(continuous subsequences) of the input. Its definition is shown in Figure 10. The default imple-
mentation of segs is given as function segsImpl . Function segsImpl uses default implementation

6For example, tails [2,−1, 3,−2, 1] results in [[2,−1, 3,−2, 1], [−1, 3,−2, 1], [3,−2, 1], [−2, 1], [1]]

14

object TailsGenerator[[E]](arglist : List[[E]]) extends GGenerator[[E]]
getter list() : List[[E]] = arglist

getter defaultImplementation() : List[[E]]→ List[[List[[E]]]] = tailsImpl [[E]]
generate2[[R,F,M,N, P, Z, Y]](r : R, f : F,mr : M,mf : N, p : P) : Z

= do

dispatching [[TailsGenerator[[E]], R, F,M,N, P, Z, Y,E]](self, r, f,mr ,mf , p)
end

end

tailsImpl [[E]](x : List[[E]]) : List[[List[[E]]]] = do

x.generate[[List[[List[[E]]]]]](TailsReduction[[E]], fn (a)⇒ singleton[[List[[E]]]](singleton[[E]](a)))
end

object TailsReduction[[E]] extends Reduction[[List[[List[[E]]]]]]
empty(): List[[List[[E]]]] = emptyList [[List[[E]]]]()
join(a : List[[List[[E]]]], b : List[[List[[E]]]]): List[[List[[E]]]] = do

h = b.left().generate[[List[[E]]]](Concat[[E]], fn (x)⇒ x);
a.map[[List[[E]]]](fn (x)⇒ x.append(h)).append(b);

end

end

tails[[E]](x : List[[E]]) : GGenerator[[E]] = TailsGenerator[[E]](x)

Figure 9: Base implementation of GGenerator tails

object SegsGenerator[[E]](arglist : List[[E]]) extends GGenerator[[E]]
getter list() : List[[E]] = arglist

getter defaultImplementation() : List[[E]]→ List[[List[[E]]]] = segsImpl [[E]]
generate2[[R,F,M,N, P, Z, Y]](r : R, f : F,mr : M,mf : N, p : P) : Z

= do

dispatching [[SegsGenerator[[E]], R, F,M,N, P, Z, Y,E]](self, r, f,mr ,mf , p)
end

end

segsImpl [[E]](x : List[[E]]) : List[[List[[E]]]] = do

concat(tailsImpl(x).map[[List[[List[[E]]]]]](initsImpl [[E]]))
end

Figure 10: Base implementation of GGenerator segs

of inits and tails since each segment is a prefix of a suffix of an input sequence. Similar to
GGenerator tails , method generate2 invokes function dispatching to make dispatching process
work. For example, a program for “Maximum Segment Sum Problem” is given as follows.

BIG MAX [
∑

[a | a← y] | y ← segs x]

Since the default implementation of tails or segs is written with method generate of Fortress’
Generator with associative operators, those programs are correct parallel programs.

Theories of GGenerator tails and GGenerator segs for optimization are found in the com-
plementary report [EHK+08].

4.2 Growing in Optimization Power

The other direction of growing is extension of the power of automatic optimization by adding
new knowledge of theories.

For example, we can extend GGenerator inits by the following theorem to support the
case of filtering with non-true predicate p. Readers do not need to understand completely this

15

efficientImplRelationalDistributive[[R,F,M,N, P, Z, Y]]
(r : R, f : IdFunction[[Y]],
mr : DistributiveOver[[R]],mf : IdFunction[[E]],
p : RelationalPredicate[[E]]) = do

join(x, y) = do

(i1, s1, h1, l1) = x

(i2, s2, h2, l2) = y

px = typecase (l1, h2) of
(Just[[E]], Just[[E]])⇒ p.related(l1.unJust(), h2.unJust())
else⇒ true

end

if px then

(r.join(i1,mr .join(s1, i2)),mr .join(s1, s2),
takeleft(h1, h2), takeright(l1, l2))
else

(i1, r.empty(), takeleft(h1, h2), takeright(l1, l2))
end

end

zero = (r.empty(),mr .empty(),Nothing[[E]],Nothing[[E]])

(r1, r2, r3, r4) = list().generate[[(Z,Z,Maybe[[E]],Maybe[[E]])]]
(MapReduceReduction[[(Z,Z,Maybe[[E]],Maybe[[E]])]](join, zero),
(fn a⇒ (a, a, Just[[E]](a), Just[[E]](a)))

r1

end

Figure 11: Efficient implementation of reduction with a predicate in GGenerator inits

theorem, but this theorem says that we can perform the nested reductions with filtering by
one reduction, if operators have distributivity and the filtering predicate p is of specific class
called “relational predicate”7. The new operator used in the replaced reduction manipulates
quadruples that are extension of tuples used by efficient implementation for “Maximum Prefix
Sum Problem” to keep edge elements.

Theorem 2 (Maximum p-Initial-segment Sum (Simplified)) Provided that ⊕ is asso-

ciative, ⊗ is associative and left-distributive over ⊕, the identity ı⊕ is the zero of ⊗, and

predicate p is relational, the following equation holds.

⊕
[
⊗

[a | a← y] | y ← initsx, p y] = first (
⊙

[(a, a, a, a) | a← x])
where (i1, s1, h1, l1)⊙ (i2, s2, h2, l2) = (i1 ⊕ (s1 ⊗ i2)l1,h2

, (s1 ⊗ s2)l1,h2
, h1 ≪ h2, l1 ≫ l2)

first (a, b, c, d) = a

(a)l,h = if p ([l, h]) then a else ı⊕

Please refer to the complementary report [EHK+08] for proof of this theorem and theoretical
backgrounds.

Simply coding the new operator, we have a new efficient implementation in GGenerator
inits shown in Figure 11. The new operator is defined as function join in the code. Value zero

is the identity of the new operator, in which identities of the original operators are used. The
reduction with the new operator is performed by method generate of the original list.

To check the applicable condition of the theorem, the library has to know the given predicate
is of “relational predicate” or not. So, we introduce trait RelationalPredicate to indicate that
a predicate extending RelationalPredicate is a relational predicate. The definition and an

7A relational predicate returns true if every pair of consecutive elements in the input satisfies a given relation.

16

trait SuffixClosedPredicate[[E]] extends ListPredicate[[E]] end

trait PrefixClosedPredicate[[E]] extends ListPredicate[[E]] end

trait SegmentClosedPredicate[[E]]
extends {PrefixClosedPredicate[[E]],SuffixClosedPredicate[[E]] }

end

trait OverlapClosedPredicate[[E]] extends ListPredicate[[E]] end

trait RelationalPredicate[[E]]
extends {SegmentClosedPredicate[[E]],OverlapClosedPredicate[[E]] }
related(a : E, b : E) : Boolean
judge(x : List[[E]]) : Boolean = do

if x.size() ≤ 1 then

true

else

sz = x.size()− 1
(0 # sz).generate[[Boolean]](AndReduction, fn i⇒ related(xi, xi+1))

end

end

end

object Ascending[[E]] extends RelationalPredicate[[E]]
related(a : E, b : E) : Boolean = a < b

end

Figure 12: Properties of predicates and an example predicate

example of RelationalPredicate is shown in Figure 12. A relational predicate returns true if
every pair of consecutive elements in the input satisfies the given relation related . An example of
relational predicates is ascending that returns true if the given list is sorted in ascending order.
Since a relational predicate has many properties, trait RelationalPredicate extends other traits
SegmentClosedPredicate and OverlapClosedPredicate. Formal definitions of those properties
are found in the complementary report [EHK+08].

To dispatch the efficient implementation to user programs, we need to modify the dispatching
table as shown in Figure 13. In the dispatching table, the applicable condition of the theorem is
checked against the arguments by typecase . Since the required condition is that the predicate
is relational and operators have distributivity, the new entry (the second case) of the table
checks whether the predicate p extends trait RelationalPredicate and the reduction operator
mr extends trait LeftDistributiveOver[[R]].

Now, a user program using inits with filtering by a predicate can receive the efficient im-
plementation shown above. For example, the following program to find the maximum sum of
ascending prefixes is executed by the single reduction, since the predicate ascending belongs to
the specific class “relational predicate.”

BIG MAX [
∑

[a | a← y] | y ← inits x, ascending(y)]

The effect of dispatching the efficient implementation is shown in the next section by exper-
iment results.

4.3 Experiment Results

This section shows the power of automatic optimization with dispatching implementation. The
following program is the target of the experiment.

BIG MAX [
∑

[a | a← y] | y ← inits x, ascending(y)]

17

dispatching [[G,R, F,M,N, P, Z, Y,E]](g : G, r : R, f : F,mr : M,mf : N, p : P) = do

typecase (g, r, f,mr ,mf , p) of

(InitsGenerator[[E]], R, IdFunction[[Y]],
LeftDistributiveOver[[R]], IdFunction[[E]],TrueListPredicate[[E]])⇒

g.efficientImplTrueDistributive[[R,F,M,N, P, Z, Y]](r, f,mr ,mf , p)

(InitsGenerator[[E]], R, IdFunction[[Y]],
LeftDistributiveOver[[R]], IdFunction[[E]],RelationalPredicate[[E]])⇒

g.efficientImplRelationalDistributive[[R,F,M,N, P, Z, Y]](r, f,mr ,mf , p)
else⇒ do

g.defaultgeneration[[R,F,M,N, P, Z, Y]](r, f,mr ,mf , p)
end

end

end

Figure 13: Extended dispatching table

Table 1: Execution time and relative speed of dispatched naive/efficient implementation

dispatched impl. size of input execution time (s) relative speed (naive impl. / x)

naive 1000 35.3 1.00
2000 126.0 1.00

efficient 1000 2.6 13.57
2000 3.1 40.64

Since the desugaring process does not work well, we desugared this comprehension by hand.
Execution time of the program is measured on the current Fortress interpreter [For] in two
cases. In the first case, the library dispatches the naive implementation to the program by
using the non-modified dispatching table shown in Figure 7. In the second case, the dispatching
of the efficient implementation shown in Figure 11 works by using the modified dispatching
table shown in Figure 13.

Measured execution time is shown in Table 1. The measurement is performed on a PC with
two quadcore CPUs (Intel R©Xeon R©E5430, total 8 cores), 8GB memory, and Linux 2.6.22. The
execution time contains startup time of a Fortress program, as well as the execution time of the
program code.

The ratio of execution time of two cases shows the power of the optimization by dispatching,
although the absolute speed is not meaningful because the interpreter is still under active
development. Dispatching the efficient implementation, the library succeeded in improving the
efficiency of the user program to achieve ten times faster execution time. So, a user program
naively written with our GG library can run efficiently.

5 Conclusion

In this report, we proposed “GG library” that supports easy development of correct and effi-
cient parallel programs. Users can write naive generate-and-test programs easily and uniformly
with GGenerators (generator-of-generators) that abstracts generation of nested data structures.
The library has an automatic optimization mechanism that automatically dispatches efficient
implementation to a user program written with GGenerators based on a collection of theories.
The library itself can easily grow up to cover a wider range of problems and to achieve better
optimization power.

18

GGenerator is a natural extension of Generator, which is one of the core features of Fortress,
to support efficient nested reductions with different operators. By checking whether opera-
tors/functions/predicates used in a user program extend a set of traits for required properties,
the library determines whether applicable condition of the efficient implementation is satisfied
or not. When the library finds that the user program satisfies the applicable condition, it
dispatches the efficient implementation to the user program. The power of optimization by
dispatching was shown by experimental results with prototype implementation.

Currently, the special desugaring process for GGenerators does not completely work. It is
a part of our future work. Another part of future work is to grow the library, by enriching the
collection of GGenerators and the collection of theories.

Acknowledgments

This report is a partial result of a joint research project “Development of a library based on
skeletal parallel programming in Fortress” with Sun Microsystems. We would like to thank the
members of Project Fortress, especially, Guy L. Steele Jr. and Jan-Willem Maessen for fruitful
discussions on this research.

References

[ACH+] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Suky-
oung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress language
specification version 1.0 β. available on web:
http://research.sun.com/projects/plrg/Publications/fortress1.0beta.pdf.

[EHK+08] Kento Emoto, Zhenjiang Hu, Kazuhiko Kakehi, Kiminori Matsuzaki, and Masato
Takeichi. Generator-based GG Fortress library —collection of GGs and theories—.
Technical Report METR2008–17, Department of Mathematical Informatics, Grad-
uate School of Information Science and Technology, University of Tokyo, 2008.
available on web: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/.

[For] Project Fortress. The reference interpreter for the Fortress language. available on
web: http://projectfortress.sun.com/Projects/Community.

19

