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Abstract

In recent years, parallel programming has become an essential task for program-
mers, but it is still a very difficult task for most programmers. There are two
difficult problems in parallel programming: difficulty of making (designing) efficient
parallel algorithms, and difficulty of implementing the parallel algorithms. The for-
mer problem is caused by lack of useful characterization of parallel algorithms and
systematic methods for deriving efficient parallel algorithms. The latter problem is
caused by the need to implement the extra considerations, such as distribution of
tasks among processors, communication of data among processors, and synchroniza-
tion of progress of the tasks, which are not required in sequential programming.

Structured parallel programming, also known as skeletal parallel programming,
has been proposed as one promising methodology to solve the problems of parallel
programming. In this methodology, programmers build parallel programs (algo-
rithms) by composing skeletons, i.e., ready-made parallel components that have
efficient parallel implementation on various parallel architectures. This approach
has the advantage that user programmers can compose parallel programs easily
without considering difficult low-level parallelism, because low-level parallelism is
completely concealed in skeletons. Once we compose parallel algorithms described
with skeletons, we can straightforwardly implement them with skeleton implementa-
tion, which is usually provided as either libraries on existing programming languages
or new programming languages including skeletons as their primitive constructs.

One difficult problem in skeletal parallel programming is to provide a method-
ology to develop efficient parallel algorithms. Especially, optimization of skeleton
compositions to improve their efficiency is very important, because it provides us
with a systematic way to compose efficient parallel algorithms from naively com-
posed skeleton programs. In general, naively composed skeleton programs suffer
from inefficiency caused by redundancy of compositions, such as redundant inter-
mediate data structures communicated between composed skeletons.

The thesis tackles the problem by homomorphism-based design of parallel skele-
tons that have good properties to develop efficient parallel algorithms by fusion.
Fusion optimization is one effective optimization to derive efficient parallel algo-
rithms. It removes redundancy of compositions by fusing consecutive skeletons in the
compositions. Therefore, we can develop efficient parallel algorithms from naively
composed skeleton programs by applying fusions to the compositions repeatedly.

The following are three important contributions of this thesis.
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The first contribution is the design of parallel skeletons based on homomor-
phisms, which provides skeletons with both good composability with each other and
nice algebraic properties to optimize their compositions. Especially, design of skele-
tons for two-dimensional arrays remained as a challenging problem. Having designed
the skeletons, we have be able to develop parallel programs to perform computa-
tion on various data structures, and to discuss structured parallel programming and
optimization of structured parallel programs.

The second contribution is development of fusion optimizations for structured
parallel programs. Parallel programs written with skeletons often suffers from the
inefficiency problem caused by redundant generation of intermediate data struc-
tures among skeleton compositions. We have studied fusion optimizations of skele-
tons based on the fusibility of homomorphisms, which can remove intermediate
data structures by fusing consecutive skeletons. Also, we have demonstrated the
power of fusion optimization by a derivation of a non-trivial efficient algorithm for
the maximum rectangle sum problem, giving a strategy to develop efficient skele-
tons programs using the fusion optimization by hand. Moreover, we have studied
domain-specific fusion optimizations of skeleton programs for computation involving
neighbor elements, which has been formalized as nested reductions.

The third contribution is implementation of the skeletons and the optimization
mechanisms on C++ and Fortress. We have successfully implemented the designed
skeletons efficiently on parallel machines, with systems for domain-independent and
domain-specific optimizations. Moreover, we have shown that the optimizations
can be implemented at library-level, owing to the homomorphism-based design of
skeletons.
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Chapter 1

Introduction

1.1 Background

In recent years, parallel programming has become an essential task for programmers,
but it is still a very difficult task for most programmers. Most of the latest computers
have become parallel computers equipped with multi-core CPUs, and small scale PC
clusters have become cheap to be used by individual programmers. At the same time,
problems that we want to solve with computers have become bigger and heavier, and
unsolvable in reasonable time and space without power of parallel computers. This
situation strongly enforces parallel programming upon programmers for maximum
use of these parallel computers. Parallel programming is, however, a very difficult
task for most programmers, because programmers must take into account extra
considerations such as distribution of tasks among processors, communication of
data among processors, and synchronization of progress of the tasks.

There are two difficult problems in parallel programming: difficulty of making
(designing) efficient parallel algorithms, and difficulty of implementing the parallel
algorithms. The former problem is caused by lack of useful characterization of
parallel algorithms and systematic methods for deriving efficient parallel algorithms.
The latter problem is caused by the need to implement the extra considerations, such
as distribution of tasks among processors, communication of data among processors,
and synchronization of progress of the tasks, which are not required in sequential
programming.

Structured parallel programming, also known as skeletal parallel programming,
has been proposed as one promising methodology to solve the problems of parallel
programming [RG02,Col02,Col89]. In this methodology, programmers build parallel
programs (algorithms) by composing skeletons, i.e., ready-made parallel components
that have efficient parallel implementation on various parallel architectures. This
approach has two major advantages. The first advantage is that user program-
mers can compose parallel programs easily without considering difficult low-level
parallelism, because low-level parallelism is completely concealed in skeletons. The
other advantage is that the composed parallel programs are easy to understand and
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maintain, since they are structured by skeletons. In other words, skeletal parallel
programming enables us to make parallel programs in a sequential style.

Once we compose parallel algorithms described with skeletons, we can straight-
forwardly implement them with skeleton implementation, which is usually provided
as either libraries on existing programming languages or new programming lan-
guages including skeletons as their primitive constructs. Much research has been
done on skeletal parallel programming, and many skeleton libraries and systems
have been proposed, which includes P3L [DPP97,Pel98], SCL [DFH+93,DGTY95],
eSkel [Col04,BCHG05], MuesLi [Kuc02], QUAFF [FSCL06], and SkeTo [MIEH06].

One difficult problem in skeletal parallel programming is to provide a method-
ology to develop efficient parallel algorithms. Especially, optimization of skeleton
compositions to improve their efficiency is very important, because it provides us
with a systematic way to compose efficient parallel algorithms from naively com-
posed skeleton programs. In general, naively composed skeleton programs suffer
from inefficiency caused by redundancy of compositions, such as redundant interme-
diate data structures communicated between composed skeletons. This inefficiency
problem is an essential problem in compositional style programming of skeletal par-
allel programming.

The thesis tackles the problem by homomorphism-based design of parallel skele-
tons that have good properties to develop efficient parallel algorithms by fusion.
Fusion optimization is one effective optimization to derive efficient parallel algo-
rithms. It removes redundancy of compositions by fusing consecutive skeletons in the
compositions. Therefore, we can develop efficient parallel algorithms from naively
composed skeleton programs by applying fusions to the compositions repeatedly.

1.2 Homomorphism-based

Structured Parallel Programming

We will briefly review our homomorphism-based structured parallel programming.

Let’s consider the following problem as an example: given a two-dimensional
array, compute the maximum of sums of all rectangle areas in the array. This
problem is called the maximum rectangle (or sub-array) sum problem, and important
as a sort of data mining and pattern matching of two dimensional [Ben84a,Ben84b,
Tak02,HIT97]. For example, for the following two-dimensional array





3 −1 4 −1 −5
1 −4 −1 5 −3
−4 1 5 3 1





the maximum rectangle sum is 15, which is the sum of bold numbers.

Let’s start at designing the algorithm using skeletons. We are provided with the
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following skeletons to manipulate two-dimensional arrays.

map f








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn








=








f x11 f x12 · · · f x1n
f x21 f x22 · · · fx

2n
...

...
. . .

...
f xm1 f xm2 · · · f xmn








reduce (⊕,⊗)








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn








=

(x11 ⊗ x12 ⊗ · · · ⊗ x1n)⊕
(x21 ⊗ x22 ⊗ · · · ⊗ x2n)⊕

...
(xm1 ⊗ xm2 ⊗ · · · ⊗ xmn)

scan (⊕,⊗)








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn








=








y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn








where yij = (x11 ⊗ x12 ⊗ · · · ⊗ x1j)⊕
(x21 ⊗ x22 ⊗ · · · ⊗ x2j)⊕

...
(xi1 ⊗ xi2 ⊗ · · · ⊗ xij)

scanr (⊕,⊗)








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn








=








z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...
zm1 zm2 · · · zmn








where zij = (xij ⊗ · · · ⊗ xin)⊕
...

(xmj ⊗ · · · ⊗ xmn)

The skeleton map applies the given function f to every element of the given two-
dimensional array. The skeleton reduce collapses a two-dimensional array into a
value using two associative binary operators ⊕ and ⊗. In other words, the skeleton
reduce takes a sum of the given array with the given operators, in which the sum of
vertical direction is computed with the first operator ⊕, and the sum of horizontal
direction is computed with the second operator ⊗. The skeletons scan returns an
array of which elements are partial results of applying reduce to the array, i.e., values
of applying reduce to sub-arrays from the top-left to the bottom-right. The skeleton
scanr works similarly in the reverse direction. Those skeletons are designed based
on homomorphism as briefly mentioned later.
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We can easily compose these skeletons to solve the problem as follows.

mrs = max ◦map sum ◦ rects ′
where
max = reduce (↑, ↑)
sum = reduce (+,+)
rects ′ = reduce (−◦, − ◦) ◦map TLs ◦ BRs
TLs = scan (−◦, − ◦) ◦map | · |
BRs = scanr (−◦, − ◦) ◦map | · |

Here, ◦ is a binary operator for function compositions, ↑ is a binary operator re-
turning the bigger operand, and three operators | · |,−◦, and − ◦ are used to construct
two-dimensional arrays: Operator | · | makes a singleton array of the given element,
−◦ builds a bigger array from two arrays of the same width by stacking them, and

− ◦ combines two arrays of the same height horizontally. For example, 2 ↑ 5 = 5,
(
1 2

)
−◦
(
5 6

)
=

(
1 2
5 6

)

, and
(
1 2

)

− ◦

(
5 6

)
=

(
1 2 5 6

)
. The function rects ′

generates all possible rectangles of the given array, using TLs and BRs to generate
top-left and bottom-right rectangles, respectively. For example, applying TLs, BRs,

and rects ′ to

(
1 2
5 6

)

, we get the following results.

TLs

(
1 2
5 6

)

=





(
1
) (

1 2
)

(
1
5

) (
1 2
5 6

)





BRs

(
1 2
5 6

)

=





(
1 2
5 6

) (
2
6

)

(
5 6

) (
6
)





rects ′
(
1 2
5 6

)

=







(
1
) (

1 2
) (

2
)

(
1
5

) (
1 2
5 6

) (
2
6

)

(
5
) (

5 6
) (

6
)







The computation of mrs = max ◦ map sum ◦ rects ′ is very clear: enumerating all
possible rectangles by rects ′, then computing sums for all rectangles bymap sum, and
finally returning the maximum value by max as the result of the whole computation.

Now, we have a clear naive algorithm to solve the problem. However, it seems
inefficient in the sense that it needs to execute O(n6) addition operations for the
input of n× n array.

The next step is to get an efficient algorithm from the naive one by fusions. To
this end, let’s see the basis of homomorphism-based skeletons for fusion optimization.

We will start at defining algebras of the target data structures. As an algebra to
represent two-dimensional arrays, we will borrow abide-tree algebra from the theory
of Constructive Algorithmics for sequential programming [Bir88]. The algebra con-
sists of three constructors (operators): | · | (singleton), −◦ (above), and − ◦ (beside).
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On this algebra, any two-dimensional array is constructed by the three construc-

tors. For example, 2 × 2 two-dimensional array

(
1 2
5 6

)

is constructed by either

(| · | 1 − ◦ | · | 2)−◦ (| · | 5 − ◦ | · | 6) or (| · | 1−◦ | · | 5) − ◦ (| · | 2−◦ | · | 6). It is worth noting
that we think that these two constructions are equivalent (this equivalence is called
abide-property), and use this “freedom” to capture the maximum parallelism, which
will be used to get efficient parallel implementation. It is also worth noting that we
use one algebra for one data structure. For example, we use another algebra called
join-list for one-dimensional data arrays.

The next step to our fusion optimization is to define homomorphism of the
algebra, by which our fusible skeletons are structured. Homomorphisms are recursive
functions of specific forms; their computation structures and their processing data
structures are closely related to each other. For two-dimensional arrays, we will have
the following homomorphism h, which is parameterized with a function f and two
associative binary operators ⊕ and ⊗ that have the abide-property.

h (| · |a) = f a
h (x−◦ y) = h x⊕ h y
h (x − ◦ y) = h x⊗ h y

For notational convenience, we write ([f,⊕,⊗]) to denote h. Intuitively, a homomor-
phism ([f,⊕,⊗]) is a function to replace the constructors | · |,−◦, and − ◦ in the input by
f , ⊕, and ⊗, respectively. It is worth noting that homomorphism has efficient (bal-
anced) parallel implementation by naive divide-and-conquer parallel computation,
in which the freedom of the algebra plays an important role for balancing.

Actually, the skeletons shown above are homomorphisms. For example, map f =
([| · | ◦ f,−◦, − ◦]), and reduce (⊕,⊗) = ([id ,−◦, − ◦]), where id is the identity function. Also,
scan and scanr are special cases of homomorphisms, but we omit them here because
they are too complicated to be shown here.

The reason why we structure our skeletons by homomorphism is that homomor-
phism has the following nice property for fusion optimization. Given a function g and
homomorphism ([f,⊕,⊗]), the composition g ◦ ([f,⊕,⊗]) is fused into another homo-
morphism ([g ◦ f,⊙,⊖]), when the following equations hold: g (x ⊕ y) = g x ⊙ g y
and g (x⊗ y) = g x⊖ g y. This property is very useful, because we can repeatedly
fuse functions into a homomorphism.

Our skeletons have good fusibility based on the fusibility of homomorphism. For
example, we can fuse two maps into one map as follows.

map f ◦map g
= { map g is homomorphism ([| · | ◦ g,−◦, − ◦]) }

map f ◦ ([| · | ◦ g,−◦, − ◦])
=

{

homomorphism fusion with

{
map f (x−◦ y) = map f x−◦map f y
map f (x − ◦ y) = map f x − ◦ map f y

}

([map f ◦ | · | ◦ g,−◦, − ◦])
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= { simplification (map f ◦ | · | ◦ g = | · | ◦ f ◦ g) }
([| · | ◦ f ◦ g,−◦, − ◦])

= { map is homomorphism }
map (f ◦ g)

Here, each use of braces ({ }) shows a reason of an equation.
Now, let’s return to our example. Using fusions of skeletons repeatedly, we can

get the following optimized algorithm for mrs . Here, the complex composition of
skeletons is fused into only one homomorphism, and it is split into two skeletons
reduce and map. We will omit the details here (please see Section 4.3.4 for details).

mrs
= { the naive composition of skeletons }

reduce (↑, ↑) ◦map (reduce (+,+)) ◦ reduce (−◦, − ◦) ◦ rects ′
where rects ′ = map (scan (−◦, − ◦) ◦map | · |) ◦ (scanr (−◦, − ◦) ◦map | · |)

= { repeated application of fusions (details are omitted) }
π1 ◦ ([fmrs ,⊕mrs ,⊗mrs ])

= { homomorphism is composition of map and reduce }
π1 ◦map fmrs ◦ reduce (⊕mrs ,⊗mrs)

Here, π1 is a function to extract the first component of a tuple. The cost of the
derived algorithm (optimized program) is O(n3), while the naive one is O(n6); we
have succeeded in deriving the efficient parallel algorithm by eliminating redundancy
of the algorithm using fusions.

Now, we have become able to develop efficient parallel algorithms with skeletons.
The rest of our concern is how to implement the algorithm as an actual parallel
program.

Implementation of algorithms described with skeletons is straightforward, when
we are provided with parallel implementation of the skeletons used, which is usually
provided as either libraries on existing programming languages or new languages
that include skeletons as their primitive constructs. For example, we have made a
library on C++ to provide implementation of our designed skeletons. Using this
library, we can implement the optimized program of mrs as follows.

1 int mrs(const matrix<int> &mat)
2 {

3 dist matrix<int> dmat(&mat);
4 dist matrix<tuple> *mat2 = map(F MRS, &dmat);
5 tuple *res = reduce(OplusMRS, OtimesMRS, mat2);
6 return res->first;
7 }

Here, dist matrix is a data structure to be manipulated by skeletons, and F MRS,
OplusMRS, and OtimesMRS are function objects that implement the function and the
operators in the derived algorithm (these are sequential programs).
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Figure 1.1. Speedup of the skeleton program for the maximum rectangle sum.

Since skeletons are implemented as components of parallel programs, programs
written with the provided skeletons work as parallel programs. For example, the
above program achieves good speed up when we use multiple processors, which is
shown in Figure 1.1.

Finally, we mention about alternative notation for parallel programming based
on our skeletons. We can provide alternative notation for parallel programming
when we have mapping from the notation to our skeletons. For example, we can use
comprehension notation [BS90,BHS+94,Ble96,BG96,CK00,CK01,CKLP01,LCK06,
CLJ+07,FRR+07] as an alternative, in which we can describe computation by two
parts: one is an expression (a function) to specify element-wise computation applied
to each element in a data structure, and the other is an operator to specify reduction
computation on the results of the element-wise computation. For example, we can
describe computation of a sum of squares in comprehension notation as follows.

∑

〈a2 | a ∈ x〉

Here, x is the data structure such as arrays, the expression a2 specifies how to
compute new elements from elements a in x, and

∑
specifies how to sum them

up (i.e., taking a sum with the usual plus operator). Intuitively, when x is a two-
dimensional array, the relation between the notation and our skeleton is given as
follows:

⊕〈f a | a ∈ x〉 ⇔ reduce (⊕,⊕) (map f x). This notation is very useful
when we need nested use of skeletons. For example, the program for the maximum
rectangle sum problem is clearly written with comprehension notation as follows.

↑〈
∑

〈a | a ∈ r〉 | r ∈ rects ′ x〉

Or, it can be abbreviated as follows.

↑〈
∑

r | r ∈ rects ′ x〉
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Here, we assume that we are provided with the function rects ′, since this function
is often used for programming on two-dimensional arrays.

Also, high-level optimization like that for mrs shown above can be implemented
by an automatic optimization mechanism, because such optimization can be sum-
marized as rewriting rules on skeleton compositions. Although such rewriting rules
may have conditions on parameter functions (operators), such conditions are usually
represented by whether the parameters have certain properties or not. Therefore, an
optimization mechanism can check such conditions and apply correct optimization,
once we annotate functions (operators) with possession of properties.

We have designed and implemented comprehension notation with a mechanism
for the high-level optimization, in which we can enjoy concise notation and the
benefit of high-level optimization for free.

1.3 Contributions and Organizations of the Thesis

The body of the thesis consists of three parts. The first part (Chapters 2 and
3) addresses principles of homomorphism-based parallel skeletons for various data
structures. The second part (Chapters 4 and 5) addresses principles of optimizations
on skeleton programs. The last part (Chapter 6) addresses implementations of the
skeletons and the optimizations.

In Chapter 2, we will introduce algebras for various data structures and ho-
momorphisms on the algebras, which are the basis of our homomorphism-based
parallel skeletons. Since homomorphisms have no gap between the structure of their
computation and the structure of their processing data, they have good composabil-
ity with each other and good optimizability for their compositions. In the thesis,
we will deal with the following data structures: lists, tow-dimensional arrays, and
trees. Especially, we will propose a novel use of the abide-tree representation of
two-dimensional arrays [Bir88], of which importance has not been fully recognized
in parallel programming community.

In Chapter 3, we will design a set of parallel skeletons based on the homo-
morphisms for lists, two-dimensional arrays, and trees. Structured by homomor-
phisms, our designed skeletons have good composability with each other owing to
that of homomorphisms, which will be shown by some example programs written
with skeletons. Especially, we will tackle the following two challenging problem: the
homomorphism-based design of parallel skeletons on two-dimensional arrays, and
development of parallel programs with these skeletons, which includes some parallel
matrix operations.

In Chapter 4, we will proceed to theories of optimizations of skeleton programs.
Parallel programs written with skeletons often suffers from the inefficiency prob-
lem caused by redundant generation of intermediate data structures among skele-
ton compositions. This problem is essential in skeletal parallel programming, be-
cause it supports the compositional-style programming; the skeletons are designed
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so that we can describe many programs by composing a small set of skeletons.
Therefore, we will study fusion optimizations of skeletons based on the fusibility
of homomorphisms, which can remove intermediate data structures by fusing con-
secutive skeletons. Also, we will demonstrate the power of fusion optimization by
a derivation of a non-trivial efficient algorithm for the maximum rectangle sum
problem [Ben84a,Ben84b,Tak02,HIT97], giving a strategy to develop efficient skele-
tons programs using the fusion optimization by hand. Especially, the development
of fusion optimization for skeletons on two-dimensional arrays and the derivation
of efficient programs for two-dimensional arrays are both big contributions of the
thesis.

In Chapter 5, we will study domain-specific optimizations of skeleton programs,
to solve some problems of domain-independent fusion optimizations caused by their
generality. We will concentrate on domain-specific fusion optimization of skeleton
programs for computation involving neighbor elements, which can be categorized into
two types: that involving a finite number of neighbor elements, such as filtering of
sequences and images, the finite difference method, and some matrix-vector opera-
tions; and that involving an infinite number of neighbor elements, such as queries of
interesting segments on lists and rectangles (sub-arrays) on two-dimensional arrays.
We will develop domain-specific fusion rules for the former type, with proposing
a new strategy for developing domain-specific fusion optimization of skeleton pro-
grams. Then, for the latter type, we will formalize it as as nested reductions, and
develop various theorems to provide efficient algorithms to nested reductions by
fusion. Especially, characterization of domain-specific fusion rules, and optimiza-
tion theorems for nested reductions with filtering or two-dimensional arrays are new
results of the thesis.

In Chapter 6, we will report implementations of the designed skeletons and the
optimizations over skeleton programs. Especially, we will propose efficient imple-
mentation of skeletons for two-dimensional arrays, a small system for fusion opti-
mizations, and design and implementation of libraries with optimization capabilities
for structured parallel programs in Fortress [ACH+08]. Experimental results with
these implementation show that the developed theories are actually effective for
parallel programming, and guarantee the success of the proposed skeletal program-
ming framework.





Chapter 2

Algebras and Homomorphisms for
Data Structures

In this chapter, we will introduce algebras and their homomorphisms, which will
be the basis of homomorphism-based skeletal parallel programming. Homomor-
phisms are recursive functions of specific forms; their computation structures and
their processing data structures are closely related to each other. This closeness
brings good composability of homomorphisms, and good algebraic laws for optimiz-
ing the compositions, which has been shown in the theory of Constructive Algorith-
mics [Bir88, Ski94, BdM96]. Therefore, using the algebras and homomorphisms as
the basis of the design, we will be able to design well-composable, well-optimizable
skeletons, which will be seen in the next chapter.

First, we will introduce notation, operators, and their properties used through-
out the thesis. Then, we will introduce algebras and their homomorphisms for
lists [Bir88, Ski94,BdM96], two-dimensional arrays [Bir88,Mil94], and trees [Ski96,
Mat07].

2.1 Preliminaries

Notation

We will use the following notation throughout the thesis, unless otherwise noted.

Notation in the thesis follows that of Haskell [Jon02, Bir98], a pure functional
language that can describe both algorithms and algorithmic transformation con-
cisely.

Function application is denoted by a space and the argument may be written
without brackets. Thus, f a means f(a) in ordinary notation.

Functions are curried; a function takes one argument and returns a function or
a value.

The function application associates to the left. Thus, f a b means (f a) b.
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The function application binds more strongly than any other operator. Thus,
f a⊗ b means (f a)⊗ b but not f (a⊗ b).

Function composition is denoted by ◦, so (f ◦ g) x = f (g x) from its definition.
Binary operators can be used as functions by sectioning as follows: a ⊕ b =

(a⊕) b = (⊕b) a = (⊕) a b.
For any binary operator ⊗, operator ⊗̃ applies the operator after swapping the

arguments. Thus, a ⊗̃ b = b⊗ a.
For any binary operator ⊕, its identity is denoted by ı⊕.
Pairs are Cartesian products of plural data, written like (x, y).
A projection function π1 extracts the first component of a pair. Thus, π1 (x, y) =

x. These can be extended to the case of arbitrary number of elements.

Useful Binary Operators and Properties of Operators

We will introduce some useful binary operators used in the thesis. After that, we
will define some properties on operators.

The maximum and minimum operators are denoted by arrows ↑ and ↓, respec-
tively, as follows.

a ↑ b = a if a ≥ b
= b otherwise

a ↓ b = a if a ≤ b
= b otherwise

Given a function f , the maximum and minimum operation with respect to the
function are denoted by ↑f and ↓f , respectively, as defined below.

a ↑f b = a if f a ≥ f b
= b otherwise

a ↓f b = a if f a ≤ f b
= b otherwise

Given two functions f and g, binary operator × makes function f × g that
applies the given functions respectively to the components of the argument pair
(x, y). Thus, (f × g) (x, y) = (f x, g y).

Given two functions f and g, binary operator △ makes function f △ g that
applies the given functions separately to an element, and returns the pair of the
results. Thus, (f △ g) a = (f a, g a).

Two binary operators ≪ and ≫ are defined by a ≪ b = a and a ≫ b = b,
respectively.

Now, we will define some properties of operators, which have certain importance
in developing parallel programs.

Associativity is the basis of balanced parallel computation since it guarantees
correctness of re-balancing of computation tasks.
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Definition 2.1 (Associativity). Binary operator ⊕ is said to be associative if the
following equation holds for all a, b and c.

a⊕ (b⊕ c) = (a⊕ b)⊕ c

Distributivity plays an important role in deriving efficient implementations. Ba-
sically, distributivity guarantees efficient reuse of partial results.

Definition 2.2 (Left-distributivity). Binary operator⊗ is said to be left-distributive
over ⊕ if the following equation holds for all a, b and c.

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

Definition 2.3 (Right-distributivity). Binary operator ⊗ is said to be right-
distributive over ⊕ if the following equation holds for all a, b and c.

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

Definition 2.4 (Distributivity). Binary operator ⊗ is said to be distributive over
⊕ if ⊗ is left- and right-distributive over ⊕, i.e. the following equations hold for all
a, b and c.

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

Commutativity is also used to change the order of computation to achieve good
efficiency.

Definition 2.5 (Commutativity). Binary operator ⊕ is said to be commutative if
the following equation holds for all a and b.

a⊕ b = b⊕ a

For example, well-known binary operators + (plus), × (times), ↑ (maximum),
and ↓ (minimum) are all associative and commutative. Moreover, × distributes over
+, and + distributes over ↑ or ↓. As seen later, concatenation operator ++ of lists is
associative, but not commutative. Also, function map f is left-distributive over ++,
since map f (x ++ y) = (map f x) ++ (map f y). Distributivity of map f is often used
in the following derivations of efficient implementations.
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2.2 Base Theory of Lists

In this section, we will introduce the base theory of lists. We will start at defining
algebra of lists. Then, we will introduce homomorphism on the algebra as basic
parallel computation, in which no gap exists between the structure of computation
and the structure of data. This close relationship results in good composability and
good optimizability.

2.2.1 Algebra of Lists

To represent lists, i.e., sequences of elements, we will use the following algebra of
lists [Bir88].

Definition 2.6 (List algebra1). The algebra of lists is defined with two constructors:
++ (concatenation) and [·] (singleton).

data List α = (List α) ++ (List α)
| [·] α

Here, [·] a, or abbreviated as [a], represents a singleton list of element a; and for
any lists x and y, x++ y represents the concatenated list consisting of elements of x
followed by those of y.

For example, a list of three elements a1, a2, and a3 is represented by [a1] ++
[a2] ++ [a3], and may be abbreviated as [a1, a2, a3]. Similarly, for a list of arbitrary
number of elements a1, a2, . . . , an, we will use the intuitive notation [a1, a2, . . . , an].
We also use a notation a : x = [a] ++ x to show the head of a list.

It is worth noting that the concatenation ++ has the associativity; for any lists
x, y, and z, two concatenations x ++ (y ++ z) and (x ++ y) ++ z result in the same
list.

The associativity of the concatenation ++ is the most important property of the
algebra, since it is the basis of good parallelism of parallel skeletons. This will be
explained after introducing the homomorphism.

Here, we will introduce a special value [ ] to represent an empty list, which is
sometimes useful to be used as the default value or the initial value in auxiliary
functions, although we consider computations on non-empty lists only. We assume
that the application of a function to [ ] results in [ ] when the function returns a
list, and also assume that it results in the identity of the binary operator when the
function returns a value computed with the binary operator, which is the natural
assumption since [ ] is the identity of ++; for any list x, either of x ++ [ ] and [ ] ++ x
equals x.

1Actually, there are several alternative algebras to represent lists [Bir88]. We have chosen the
algebra because it has good properties to be used as the basis of parallel skeletons.
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2.2.2 List Homomorphism

From the theory of Constructive Algorithmics [BdM96], it follows that each con-
structively built-up data structure (i.e., algebraic data structure) is equipped with
a powerful computation pattern called homomorphism. The homomorphism of the
list algebra is defined as follows.

Definition 2.7 (List homomorphism). Given a function f and an associative binary
operator ⊕, a list homomorphism h is a function defined by the following equations.

h (x++ y) = h x⊕ h y
h [a] = f a

For notational convenience, we write ([f,⊕]) to denote h. When it is clear from the
context, we just call ([f,⊕]) homomorphism.

Intuitively, a homomorphism ([f,⊕]) is a function to replace the constructors [·]
and ++ of the input list with f and ⊕, respectively. For example, applying ([f,⊕])
to a list [a1, a2, a3, a4], we get the following result.

([f,⊕]) [a1, a2, a3, a4] = ([f,⊕]) ([·] a1 ++ [·] a2 ++ [·] a3 ++ [·] a4)
= f a1 ⊕ f a2 ⊕ f a3 ⊕ f a4

Many programs are written in terms of homomorphisms. For example, a sum-
mation of elements of a list,

sum [1, 2, 3, 4] = 1 + 2 + 3 + 4,

is clearly written with a homomorphism as follows:

sum = ([id ,+]) .

It applies the identity function id to each of the elements, and then sums up them
by the operator +:

([id ,+]) [1, 2, 3, 4] = id 1 + id 2 + id 3 + id 4

= 1 + 2 + 3 + 4

= sum [1, 2, 3, 4] .

Functions to calculate the length of a list and to double elements of a list are also
written as homomorphism:

length = ([one,+]) where one a = 1 ,

double = ([[·] ◦ dbl,++]) where dbl a = 2× a .

Note that ⊕ of homomorphism ([f,⊕]) must be associative, inheriting the as-
sociativity of ++. Otherwise the result is not well-defined, because the recursion
structure of the computation of the homomorphism can vary according to the free-
dom of division (construction) of the argument list.
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Balanced Divide-and-conquer Parallel Computation of Homomorphism

We will briefly see the good parallelism of the list algebra and the list homomor-
phism.

The associativity of the algebra brings good divide-and-conquer parallelism in
computation of homomorphism. Let’s consider to apply homomorphism ([f,⊕]) to
list [a1, a2, . . . , an]. To compute ([f,⊕]) [a1, a2, . . . , an] we can divide the list at the
middle point like [a1, a2, . . . , an] = [a1, a2, . . . , a⌈n/2⌉] ++ [a⌈n/2⌉+1, . . . , an], since the
concatenation is associative. This division results in the following computation.

([f,⊕]) [a1, a2, . . . , an]
= { Diving the list at the middle point }

([f,⊕]) ([a1, a2, . . . , a⌈n/2⌉] ++ [a⌈n/2⌉+1, . . . , an])
= { Definition of homomorphism }

(([f,⊕]) [a1, a2, . . . , a⌈n/2⌉])⊕ (([f,⊕]) [a⌈n/2⌉+1, . . . , an])

The above equation means that we can compute ([f,⊕]) [a1, a2, . . . , an] in two steps:
(1) computing two sub-results ([f,⊕]) [a1, a2, . . . , a⌈n/2⌉] and ([f,⊕]) [a⌈n/2⌉+1, . . . , an],
and then (2) combining those results with the operator ⊕. Also, we can compute
the sub-results in parallel, since their computations are independent. Thus, repeat-
edly applying the division of computation to get the sub-results, we can compute
the result of homomorphism by a naive divide-and-conquer parallel computation.
Therefore, we can use homomorphism as the basic parallel computation pattern.

2.3 Base Theory of Two-Dimensional Arrays

We will build the base theory of two-dimensional arrays based on Constructive
Algorithmics [Bir88, Ski94, BdM96]. First, we will introduce an algebra of two-
dimensional arrays. Then, we will define its homomorphism, which is the basis of
parallel computations on two-dimensional arrays.

2.3.1 Abide-tree Algebra for Two-Dimensional Arrays

To represent two-dimensional arrays, we use the following abide-tree algebra, which
are built up by three constructors | · | (singleton),−◦ (above) and − ◦ (beside) [Bir88].
The abide-tree representation of two-dimensional arrays not only inherits the ad-
vantages of tree representations of matrices where recursive blocked algorithms can
be defined to achieve better performance [EGJK04,FW03,Wis99], but also supports
systematic development of parallel programs and architecture independent imple-
mentation.

Definition 2.8 (Abide-tree algebra). The abide-tree algebra for two-dimensional
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arrays is defined with three constructors: | · | (singleton),−◦ (above), and − ◦ (beside).

data AbideTree α = | · | α
| (AbideTree α)−◦ (AbideTree α)
| (AbideTree α) − ◦ (AbideTree α)

Here, | · | a, or abbreviated as |a|, means a singleton array of a, i.e. a two-
dimensional array with a single element a. We define the function the to extract the
element from a singleton array, i.e. the |a| = a. For two-dimensional arrays x and y
of the same width, x−◦ y represents an array made by putting x on y. Similarly, for
two-dimensional arrays x and y of the same height, x − ◦ y represents an array made
by putting x on the left of y. Moreover, −◦ and − ◦ are associative binary operators
and have the following abide (a coined term from above and beside) property.

Definition 2.9 (Abide Property). Two binary operators ⊕ and ⊗ are said to have
the abide property or to be abiding, if the following equation holds for any x, y, u,
and y in the interested domain:

(x⊗ u)⊕ (y ⊗ v) = (x⊕ y)⊗ (u⊕ v) .

In the rest of the thesis, we will assume no inconsistency in height or width when

− ◦ and−◦ are used.
Note that one two-dimensional array may be represented by more than one abide-

trees, but these abide-trees are equivalent because of the abide property of−◦ and − ◦.
For example, we can express the 2× 2 two-dimensional array

(
1 2
3 4

)

by the following two equivalent abide-trees.

(|1| −◦ |2|)−◦ (|3| −◦ |4|)
(|1|−◦ |3|) − ◦ (|2|−◦ |4|)

This is in sharp contrast to other representations of matrices, such as quadtree rep-
resentation [FW03], which do not allow such freedom. This freedom is important in
our framework. First, this freedom allows easy re-balancing of the tree in compu-
tations such as divide-and-conquer computations on abide-trees, as associativity of
++ does for computation on lists. Therefore, the freedom is important for efficient
balanced parallel computation. Next, the freedom is useful to describe and derive
efficient programs for various architectures. In our framework, a program construc-
tion may have two phases. First, we make a general program that is architecture
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independent. Then, we derive a good program that may be architecture dependent
or may have restricted order of access. In this approach, restrictive representation
prevents us form describing and deriving efficient programs. For example, a list
of lists representation, which restricts the access order to outer dimension to inner
dimension, does not allow us to describe and to derive efficient blocked algorithms.
Thus, we start with a program using the abide-tree representation that does not
impose restrictions on the access order, then we transform it to a good program
that may have the restricted order of accesses.

2.3.2 Abide-tree Homomorphism

Next, we will introduce homomorphism on the abide-trees, which will be the basis
of parallel computations on two-dimensional data structures. From the theory of
Constructive Algorithmics [BdM96], it follows that each constructively built-up data
structure (i.e., algebraic data structure) is equipped with a powerful computation
pattern called homomorphism.

Definition 2.10 (Abide-tree homomorphism). Given a function f and two associa-
tive binary operators ⊕ and ⊗ that have the abide property, an abide-tree homo-
morphism h is a function defined by the following equations.

h |a| = f a
h (x−◦ y) = h x⊕ h y
h (x − ◦ y) = h x⊗ h y

For notational convenience, we write ([f,⊕,⊗]) to denote h. When it is clear from
the context, we just call ([f,⊕,⊗]) homomorphism.

Intuitively, a homomorphism ([f,⊕,⊗]) is a function to replace the constructors
| · |, −◦, and − ◦ in an input abide-tree by f , ⊕, and ⊗, respectively. We will see
in Section 3.2 that many algorithms on two-dimensional arrays can be concisely
specified by homomorphisms.

Note that ⊕ and ⊗ of homomorphism ([f,⊕,⊗]) must be associative and have
the abide property, inheriting the properties of−◦ and − ◦.

We can describe many functions with homomorphism. For example, a summa-
tion of elements of an array,

sum

(
1 5
7 3

)

= 1 + 5 + 7 + 3,

is clearly written with a homomorphism as follows:

sum = ([id ,+,+]) .
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It applies the identity function id to each of the elements, and then sums up them
by the operator +:

([id ,+,+])

(
1 5
7 3

)

= ([id ,+,+])
(
1 5

)
+ ([id ,+,+])

(
7 3

)

= (id 1 + id 5) + (id 7 + id 3)

= 1 + 5 + 7 + 3

= sum

(
1 5
7 3

)

.

In the above computation, we assumed that the input array is constructed as (|1| −◦

|5|)−◦ (|7| −◦ |3|). It is worth noting that we can get the same result when the array
is constructed in the alternative way as (|1| −◦ |7|) − ◦ (|5| −◦ |3|), because the plus
operator + has the abide property for itself. Generally, a commutative, associative
binary operator satisfies the condition of the abide property for itself. Functions to
calculate the width of an array and to double elements of an array are also written
as homomorphism:

width = ([one,≪,+]) where one a = 1 ,

double = ([[·] ◦ dbl,−◦, − ◦]) where dbl a = 2× a .
Because of the flexibility of the abide-tree representation, a homomorphism

([f,⊕,⊗]) can be implemented efficiently in parallel, which will be shown in Chap-
ter 6. Therefore, we will design our parallel skeletons based on the homomorphisms.

2.4 Base Theory of Trees

This section briefly reviews the base theory of trees. Here, we will deal with only
binary trees, in which internal nodes have exactly two children. The theory of
another type of trees, i.e., rose trees (a term coined by Meertens [Mee88]), of which
internal nodes have an arbitrary number of children, can be found in Matsuzaki’s
thesis [Mat07].

First, we will introduce an algebra of binary trees. Then, we will proceed to tree
homomorphism.

2.4.1 Algebra of Trees

The algebra of binary trees is given as follows.

Definition 2.11 (Algebra of binary trees). The algebra of binary trees is defined
with two constructors BLeaf for leaves and BNode for internal nodes as follows.

data BTree α β = BLeaf α
BNode (BTree α β) β (BTree α β)
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The BLeaf is the constructor for leaves, and holds an element of type α. The
BNode is the constructor for internal nodes and takes three parameters, the left
subtree, the value of the node, and the right subtree, in this order. The value of the
node has type β.

Although the above algebra has no freedom for parallelism, we can construct
another equivalent algebra with certain freedom for parallelism, which has been
formalized as tree associativity [Mat07]. However, the algebra and tree associativity
are too complicated to show in this thesis. Thus, we will use the above simple
algebra to define tree skeletons, although we will show condition for efficient parallel
computation translated from the tree associativity.

We introduce two functions for manipulating binary trees. Function rootb returns
the value of the root node, and function setrootb takes a binary tree and a value,
and replaces the value of the root node with the input value. Note that we use −
to denote a don’t-care value.

rootb (BLeaf a) = a
rootb (BNode − b −) = b

setrootb (BLeaf −) a′ = BLeaf a′

setrootb (BNode l − r) b′ = BNode l b′ r

It is worth noting that there has been research on parallel skeletons for rose
trees (a term coined by Meertens [Mee88]) of which internal nodes have an arbi-
trary number of children. However, we will omit the results here, because it has
been developed based on the theory of binary trees. Please refer to Matsuzaki’s
thesis [Mat07] for the details.

2.4.2 Tree Homomorphisms

For binary trees, we can define the following binary-tree homomorphism (or tree
homomorphism for short) [Ski94,Ski96].

Definition 2.12 (Tree Homomorphism). Let kl and kn be given functions. A func-
tion h is called tree homomorphism (or simply homomorphism), if it is defined in
the following recursive form.

h (BLeaf a) = kl a
h (BNode l b r) = kn (h l) b (h r)

We may denote the tree homomorphism above as h = ([kl, kn])b.

We can specify many tree manipulations in the form of tree homomorphism. An
example of tree homomorphism is function heightb that computes the height of a
binary tree.

heightb (BLeaf a) = 1
heightb (BNode l b r) = 1 + (heightb l ↑ heightb r)
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This function is indeed a tree homomorphism heightb = ([height l, heightn])b with the
two parameter functions defined as follows:

height l a = 1
heightn l b r = 1 + (l ↑ r) .

Tree homomorphisms that return a basic value, like the heightb function, are often
called tree reductions.

The following two computational patterns called tree accumulations return trees
instead of basic values. These two tree accumulations are in fact tree homomor-
phisms [Mat07] as stated later.

Definition 2.13 (Upwards accumulation). Let kl and kn be given functions. A
function hu is called upwards accumulation, if it is defined in the following recursive
form.

hu (BLeaf a) = BLeaf (kl a)
hu (BNode b l r) = let l′ = hu l

r′ = hu r
in BNode (kn b (rootbl

′) (rootb r
′)) l′ r′

Definition 2.14 (Downwards accumulation). Let gl and gr be given functions.
A function hd is called downwards accumulation, if it is defined in the following
recursive form with additional parameter c.

hd c (BLeaf a) = BLeaf c
hd c (BNode l b r) = BNode (hd (gl c b) l) c (h

d (gr c b) r)

These tree accumulations are in fact tree homomorphisms. The upwards accu-
mulation hu defined with two parameter functions kl and kn is a tree homomorphism,
hu = ([k′l, k

′
n])b, in which the two parameter functions are defined as follows.

k′l a = BLeaf (kl a)
k′n l b r = BNode l (kn b (rootb l) (rootb r)) r

The downwards accumulation hd defined with two functions gl and gr is a higher-
order tree homomorphism, hd c t = ([kl, kn])b t c, in which the two parameter func-
tions are defined as follows.

kl a = λc.BLeaf c
kn b l r = λc.BNode c (l (gl c b)) (r (gr c b))
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2.5 Related Work

We will briefly mention related work on representations of data structures.

List Representations

Besides the join-list representation used in this thesis, cons-list and snoc-list presen-
tations [Bir88,BdM96] are often used in theoretical studies in the field of functional
programming. The cons-list representation has two constructors: the empty list,
and the cons operator to put an element on the head of the given list. The snoc-list
has similar constructors: the empty list, and the snoc operator to put an element
on the last of the given list. Since those two representations have no freedom for
balancing the computation of their homomorphisms, they are suitable for sequential
programs but not for parallel programs.

Fortunately, there has been research to connect the sequential representations
(cons-list) with the parallel representation (join-list). The diffusion theorem [HTI99]
gives a powerful method to obtain suitable program on the join-list representation
from a program recursively defined on the cons-list representation; the theorem
gives us a method to parallelize sequential programs. Chin et al. [HTC98,CTH98]
have studied a systematic method to derive an associative operator that plays an
important role in parallelization, based on which Xu et al. [XKH04] build an auto-
matic derivation system for parallelizing recursive linear functions with normaliza-
tion rules.

Matrix Representations

Wise et al. [Wis84] proposed representation of two-dimensional arrays by quadtrees,
in which two-dimensional arrays are recursively constructed by four small sub-arrays
of the same size. This representation is suitable for describing recursive blocked al-
gorithms [EGJK04], which can provide better performance than existing algorithms
for some matrix computations such as LU and QR factorizations [FW03,Wis99].
However, the quadtree representation requires the size of two-dimensional arrays to
be the power of two. Moreover, once a two-dimensional array is represented by a
quadtree, we cannot reblock the array by restructuring the quadtree, which would
prevent us from developing more parallelism in the recursive blocked algorithms on
them.

Bikshandi et al. [BGH+06] proposed representation of a two-dimensional array
by a hierarchically tiled array (HTA). An HTA is an array partitioned into tiles, and
these tiles can be either conventional arrays or lower level HTAs. The outermost
tiles are distributed across processors for parallelism and the inner tiles are utilized
for locality. In the HTA programming, users are allowed to use recursive index
accessing according to the structure of HTAs, so that they can easily transform
conventional programs onto HTA programs. Communication and synchronization
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are explicitly expressed by index accessing to remote tiles. Thus HTA programs can
control relatively low-level parallelism and can be efficient implementation. However,
it is not presented how to derive efficient HTA programs. We think it is good that
we derive an efficient algorithm on the abide-tree then implement it on HTAs.

A more natural representation of a two-dimensional array is to use nested one-
dimensional arrays (lists) [Bir88,Ski94, Jeu93]. The advantage is that many results
developed for lists can be reused. However, this representation imposes much re-
striction on the access order of elements.

The abide-tree representation, as used in this chapter, was first proposed by
Bird [Bir88], as an extension of one-dimensional join lists. However, the focus there
is on derivation of sequential programs for manipulating two-dimensional arrays,
and there is little study on the framework for developing efficient parallel programs.
Our work provides a good complement.

Tree Representations

There has been research on tree representations with good parallelism for load-
balancing. Matsuzaki [Mat07] has proposed the ternary-tree representation for bi-
nary trees, in which three special nodes are introduced for the flexibility of structures.
The flexibility has been formalized as tree-associativity, which is a natural extension
of the usual associativity of binary operators.





Chapter 3

Homomorphism-based Design of
Parallel Skeletons

In this chapter, we will introduce homomorphism-based design of parallel skeletons
for various data structures. Homomorphism-based skeletons have good compos-
ability inherited from homomorphisms. Thus, we can describe many problems by
composing a small set of homomorphism-based skeletons. Also, we will be able to
develop optimizations of skeleton compositions, owing to the nice algebraic laws of
homomorphisms, which will be seen in the next chapter.

First, we will introduce parallel skeletons for lists. Then, we will design parallel
skeletons for tow-dimensional arrays, which has remained as a challenging problem.
We will also show some non-trivial programs written with the skeletons. Finally, we
will show parallel skeletons for trees briefly.

3.1 Homomorphism-based Parallel Skeletons for

Lists

First, we will define five parallel skeletons based on lists. Then, we will show some
programs written with the skeletons, and some variants of the skeletons.

3.1.1 Definitions of Parallel Skeletons

We will define five parallel skeletons on lists: map and reduce for basic computa-
tions, zipwith for extended element-wise computations, and scan and scanr on lists
for accumulation computations. Those functions will be defined based on the ho-
momorphism. In the theory of Constructive Algorithmics [Bir88, Ski94, BdM96],
these functions are known to be the most fundamental computation components
for manipulating algebraic data structures and for being glued together to express
complicated computations. Intuitive definitions of the skeletons are shown in Figure
3.1.
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map f [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]
reduce (⊕) [a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an
zipwith f [a1, a2, . . . , an] [b1, b2, . . . , bn] = [f a1 b1, f a2 b2, . . . , f an bn]
scan (⊕) [a1, a2, . . . , an] = [y1, y2, . . . , yn]

where yi = a1 ⊕ a2 ⊕ · · · ⊕ ai
scanr (⊕) [a1, a2, . . . , an] = [z1, z2, . . . , zn]

where zi = ai ⊕ ai+1 ⊕ · · · ⊕ an

Figure 3.1. Intuitive definitions of parallel skeletons on lists.

Basic Skeletons: Map and Reduce

The skeletons map and reduce are two special cases of homomorphism.
The skeleton map applies the given function to each element of the given list. It

is defined as follows.

map f (x++ y) = (map f x) ++ (map f y)
map f [a] = [f a]

This definition means map f = ([[·] ◦ f,++]).
The skeleton reduce takes a sum of the given list with the given operator. It is

defined as follows.

reduce (⊕) (x++ y) = (reduce (⊕) x)⊕ (reduce (⊕) y)
reduce (⊕) [a] = a

This definition means reduce (⊕) = ([id,⊕]).
Here are example uses of the skeletons. We can use map to increment all elements

of a list as follows.

map (1+) [6, 2, 1, 4, 3, 5] = [7, 3, 2, 5, 4, 6]

We can use reduce to take a sum of a list as follows.

reduce (+) [6, 2, 1, 4, 3, 5] = 21

Extended Skeletons: Zipwith, Scan, and Scanr

The two skeletons defined above are primitive skeletons. We will define other skele-
tons that are extensions of these primitive skeletons.

The skeleton zipwith, an extension of map, takes two lists of the same length, and
applies the given function f to every pair of corresponding elements of the lists.

zipwith f (x++ y) (u++ v) = (zipwith f x u) ++ (zipwith f y v)
zipwith f [a] [b] = [f a b]
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Note that in the above definition the two argument lists should be divided in the
way that the corresponding sub-lists have the same length.

Here, we define a specialization of zipwith to make a list of pairs.

zip = zipwith (λx y.(x, y))

We may define similar zip and zipwith for the case when the number of input lists is
three or more, and those that take k lists are denoted by zipk and zipwithk.

The skeleton scan, an extension of reduce, holds all values generated in reducing
a list by reduce.

scan (⊕) (x++ y) = (scan (⊕) x)⊕′ (scan (⊕) y)
where sx⊕′ sy = sx++map ((reduce (≫) sx)⊕ ) sy

scan (⊕) [a] = [a]

This definition means scan (⊕) = ([[·],⊕′]).
Also, the skeleton scanr is defined as a reverse of scan, which holds all values

generated during a reduction in the reverse order.

scanr (⊕) (x++ y) = (scanr (⊕) x)⊕′′ (scanr (⊕) y)
where sx⊕′′ sy = map (⊕ (reduce (≪) sy)) sx++ sy

scanr (⊕) [a] = [a]

This definition means scanr (⊕) = ([[·],⊕′′]).
Here are example uses of the skeletons. We can use zipwith to add two lists

element-wisely.

zipwith (+) [6, 2, 1, 4, 3, 5] [2, 7, 6, 1, 0, 4] = [8, 9, 7, 5, 3, 9]

We can use scan and scanr to compute prefix sums and suffix sums, respectively.

scan (+) [6, 2, 1, 4, 3, 5] = [6, 8, 9, 13, 16, 21]
scanr (+) [6, 2, 1, 4, 3, 5] = [21, 15, 13, 12, 8, 5]

3.1.2 Example Programs and Variants of Skeletons

Composing these skeletons defined above, we can describe many useful functions as
follows.

id = reduce (++) ◦map [·]
reverse = reduce (+̃+) ◦map [·]
flatten = reduce (++)
length = reduce (+) ◦map (λx. 1)
last = reduce (≫)
head = reduce (≪)
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The function id is the identity function of lists. The function reverse reverses the
given list. The function flatten flattens a list of lists into a list. The function length
returns the length of the given list. The functions last and head returns the last
element and the first element of the given list, respectively.

Finally, we will defined some variants of skeletons and useful functions defined
with them.

scan′ (⊕) e = map (e⊕) ◦ scan (⊕)
scanr′ (⊕) e = map (⊕e) ◦ scanr (⊕)
shift≫ e = map π1 ◦ scan′ (⊕) ( , e, ) ◦map f

where f a = (a, a,True)
( , p, )⊕ ( , c,True) = (p, c, False)
( , , )⊕ (p, c, False) = (p, c, False)

shift≪ e = map π1 ◦ scanr′ (⊕) ( , e, ) ◦map f
where f a = (a, a,True)

( , c,True)⊕ ( , p, ) = (p, c, False)
(p, c, False)⊕ ( , , ) = (p, c, False)

filter p = ([if p a then [a] else [ ],++])
init = flatten ◦ shift≫ [ ] ◦map [·]
tail = flatten ◦ shift≪ [ ] ◦map [·]
drop n x = tail (drop (n− 1) x)
drop 0 x = x
take n x = [head x] ++ take (n− 1) (tail x)
take 0 x = [ ]
taker n = reverse ◦ take n ◦ reverse
dropr n = reverse ◦ drop n ◦ reverse

Their intuitive definition is shown below.

scan′ (⊕) e [a1, . . . , an] = [b1, . . . , bn]
where bi = e⊕ a1 ⊕ · · · ⊕ ai

scanr′ (⊕) e [a1, . . . , an] = [c1, . . . , cn]
where ci = ai ⊕ · · · ⊕ an ⊕ e

shift≫ e [a1, . . . , an] = [e, a1, . . . , an−1]
shift≪ e [a1, . . . , an] = [a2, . . . , an, e]
filter p [a1, a2, . . . , an] = [ai1 , ai2 , . . . , aim ] where p (aij) = True

init [a1, . . . , an] = [a1, . . . , an−1]
tail [a1, . . . , an] = [a2, . . . , an]
take k [a1, . . . , an] = [a1, . . . , ak]
drop k [a1, . . . , an] = [ak+1, . . . , an]
taker k [a1, . . . , an] = [an−k+1, . . . , an]
dropr k [a1, . . . , an] = [a1, . . . , an−k]

Skeletons scan′ and scanr′ take the initial values of reductions. Skeleton shift≫ shifts
the elements by putting the given element to the head and discarding the last el-
ement. Skeleton shift≪ does the converse. Two functions init and tail take initial
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segment and the tail segment of the list, respectively. The function take k picks
up the first k elements of the given list, and the function drop removes the first k
elements from the given list. Conversely, the function taker k picks up the last k
elements of the given list, and the faction dropr removes the last k elements from
the given list.

3.2 Homomorphism-based Parallel Skeletons for

Two-Dimensional Arrays

In this section, we will design a set of parallel skeletons for manipulating two-
dimensional arrays. Also, we will show that compositions of the skeletons are power-
ful enough to describe useful parallel algorithms. The power of skeleton compositions
will be shown by describing nontrivial problems such as matrix multiplication and
QR decomposition.

3.2.1 Definitions of Parallel Skeletons

We will define five parallel skeletons on two-dimensional arrays: map and reduce for
basic computations, zipwith for extended element-wise computations, and scan and
scanrfor accumulation computations. In the theory of Constructive Algorithmics
[Bir88, Ski94, BdM96], list versions of these functions are known to be the most
fundamental computation components for manipulating algebraic data structures
and for being glued together to express complicated computations.

Intuitive definitions of the skeletons are shown in Figure 3.2.

Basic Skeletons: Map and Reduce

The skeletons map and reduce are two special cases of homomorphism.

The skeleton map applies the given function f to every element of the given
two-dimensional array. Its definition is as follows.

map f |a| = |f a|
map f (x−◦ y) = (map f x)−◦ (map f y)
map f (x − ◦ y) = (map f x) − ◦ (map f y)

This definition means map f = ([| · | ◦ f,−◦, − ◦]).
The skeleton reduce collapses a two-dimensional array into a value using two

associative binary operators ⊕ and ⊗ that have the abide property. In other words,
the skeleton reduce takes a sum of the given array with the given operators, in which
the sum of vertical direction is computed with the first operator ⊕, and the sum of
horizontal direction is computed with the second operator ⊗. Its definition is given
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map f








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn








=








f x11 f x12 · · · f x1n
f x21 f x22 · · · fx

2n
...

...
. . .

...
f xm1 f xm2 · · · f xmn








reduce (⊕,⊗)








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn








=

(x11 ⊗ x12 ⊗ · · · ⊗ x1n)⊕
(x21 ⊗ x22 ⊗ · · · ⊗ x2n)⊕

...
(xm1 ⊗ xm2 ⊗ · · · ⊗ xmn)

zipwith f








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn















y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn








=








f x11 y11 f x12 y12 · · · f x1n y1n
f x21 y21 f x22 y22 · · · f x2n y2n

...
...

. . .
...

f xm1 ym1 f xm2 ym2 · · · f xmn ymn








scan (⊕,⊗)








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn








=








y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn








where yij = (x11 ⊗ x12 ⊗ · · · ⊗ x1j)⊕
(x21 ⊗ x22 ⊗ · · · ⊗ x2j)⊕

...
(xi1 ⊗ xi2 ⊗ · · · ⊗ xij)

scanr (⊕,⊗)








x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn








=








z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...
zm1 zm2 · · · zmn








where zij = (xij ⊗ · · · ⊗ xin)⊕
...

(xmj ⊗ · · · ⊗ xmn)

Figure 3.2. Intuitive definition of five skeletons on two-dimensional arrays.
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as follows.

reduce (⊕,⊗) |a| = a
reduce (⊕,⊗) (x−◦y) = (reduce (⊕,⊗) x)⊕(reduce (⊕,⊗) y)
reduce (⊕,⊗) (x − ◦y) = (reduce (⊕,⊗) x)⊗(reduce (⊕,⊗) y) ,

This definition means reduce(⊕,⊗) = ([id,⊕,⊗]).
Here are some example uses of the skeletons. We can use map to take a scalar

product of an array as follows.

map (2×)
(

6 2 1
4 3 5

)

=

(
12 4 2
8 6 10

)

We can use reduce to take a sum of an array as follows.

reduce (+,+)

(
6 2 1
4 3 5

)

= 21

Extended Skeleton for Element-wise Computation: Zipwith

The two skeletons defined above are primitive skeletons. We define other skeletons
that are extensions of these primitive skeletons.

The skeleton zipwith, an extension of map, takes two two-dimensional arrays of
the same shape, and applies a function f to every pair of corresponding elements of
the arrays.

zipwith f |a| |b| = |f a b|
zipwith f (x−◦ y) (u−◦ v) = (zipwith f x u)−◦ (zipwith f y v)
zipwith f (x − ◦ y) (u − ◦ v) = (zipwith f x u) − ◦ (zipwith f y v)

Note that in the above definition the argument two-dimensional arrays of the func-
tion should be divided in the way that the sizes of x and u are the same.

We also define useful function zip, which is a specialization of zipwith to make a
two-dimensional array of pairs of corresponding elements.

zip (u, v) = zipwith (λxy. (x, y)) u v

We may define similar zip and zipwith for the case when the number of input arrays
is three or more, and those that take k arrays are denoted by zipk and zipwithk.
Also, we define unzip to be the inverse of zip.

For example, we can use zipwith to compute an addition of two arrays as follows.

zipwith (+)

(
6 2 1
4 3 5

) (
0 8 2
9 1 7

)

=

(
6 10 3
13 4 12

)
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Simple Functions Described with Map, Reduce, and Zipwith

Composing these skeletons defined above, we can describe many useful functions as
follows. We will use these functions to define complex skeletons scan and scanr.

id = reduce(−◦, − ◦) ◦map | · |
tr = reduce( − ◦,−◦) ◦map | · |
rev = reduce(−̃◦, ˜− ◦) ◦map | · |
flatten = reduce(−◦, − ◦)
height = reduce(+,≪) ◦map (λx. 1)
width = reduce(≪,+) ◦map (λx. 1)
cols = reduce(zipwith(−◦), − ◦) ◦map || · ||
rows = reduce(−◦, zipwith( − ◦)) ◦map || · ||
reducec(⊕) = map(reduce(⊕,≪)) ◦ cols
reducer(⊗) = map(reduce(≪,⊗)) ◦ rows
mapc f = reduce(≪, − ◦) ◦map f ◦ cols
mapr f = reduce(−◦,≪) ◦map f ◦ rows
madd = zipwith(+)
msub = zipwith(−)
top = reduce(≫, − ◦) ◦map | · |
bottom = reduce(≫, − ◦) ◦map | · |
left = reduce(−◦,≫) ◦map | · |
right = reduce(−◦,≫) ◦map | · |

Here, || · || is abbreviation of | · | ◦ | · |. The function id is the identity function of
AbideTree, and tr is the matrix-transposing function. The function rev takes a two-
dimensional array and returns the array reversed in the vertical and the horizontal
direction. The function flatten flattens nested arrays. The functions height and
width return the number of rows and columns, respectively. The functions cols
and rows return arrays of which elements are columns and rows of the array of
the argument, respectively. The functions reducec and reducer are specializations
of reduce to collapse two-dimensional arrays in column direction and row direction,
respectively. They return a row-vector (an array of which height is one) and a
column-vector (an array of which width is one), respectively. The functions mapc
and mapr are specializations of map to apply functions to each column and row,
respectively (i.e. the function of the argument takes column-vector or row-vector).
The functions madd and msub denote matrix addition and subtraction, respectively.
The functions top, bottom, left , and right return the bottom row, the top row, the
leftmost column, and the rightmost column, respectively.

Extended Skeleton for Accumulation Computation: Scan and
Scanr

We will define the rest of the extended skeletons.
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The skeleton scan, an extension of reduce, holds all values generated in reducing
a two-dimensional array by reduce. Its definition is as follows.

scan (⊕,⊗) |a| = |a|
scan (⊕,⊗) (x−◦ y) = (scan (⊕,⊗) x)⊕′ (scan (⊕,⊗) y)
scan (⊕,⊗) (x − ◦ y) = (scan (⊕,⊗) x)⊗′ (scan (⊕,⊗) y)

Here operators ⊕′ and ⊗′ are defined as follows.

sx⊕′ sy = sx−◦ sy′
where sy′ = mapr (zipwith (⊕) (bottom sx)) sy

sx⊗′ sy = sx − ◦ sy′
where sy′ = mapc (zipwith (⊗) (right sx)) sy

The definition means scan (⊕,⊗) = ([| · |,⊕′,⊗′]). Note that ⊕ and ⊗ must be
associative and have the abide property.

The skeleton scanr is the reverse of scan, i.e., holds all values generated during
the reduction in the reverse order. Its definition is as follows.

scanr (⊕,⊗) |a| = |a|
scanr (⊕,⊗) (x−◦ y) = (scanr (⊕,⊗) x)⊕′ (scanr (⊕,⊗) y)
scanr (⊕,⊗) (x − ◦ y) = (scanr (⊕,⊗) x)⊗′ (scanr (⊕,⊗) y)

Here operators ⊕′ and ⊗′ are defined as follows.

sx⊕′ sy = sx′−◦ sy
where sx′ = mapr (λx. zipwith (⊕) x (top sy)) sx

sx⊗′ sy = sx′ − ◦ sy
where sx′ = mapc (λx. zipwith (⊗) x (left sy)) sx

The definition means scanr (⊕,⊗) = ([| · |,⊕′,⊗′]). Note that ⊕ and ⊗ must be
associative and have the abide property.

Here are example uses of the skeletons. We can compute a prefix rectangle sum
(an upper-left prefix sum) and a suffix rectangle sum (a lower-right suffix sum) using
scan and scanr, respectively.

scan (+,+)

(
6 2 1
4 3 5

)

=

(
6 8 9
10 15 21

)

scanr (+,+)

(
6 2 1
4 3 5

)

=

(
21 11 6
12 8 5

)

Using the skeletons scan and scanr, we can define allredr and allredc to the results
of reducer and reducec in rows and columns, respectively. These functions are defined
as follows. We will use them in later sections.

allredc(⊕) = scanr(≫,≪) ◦ scan(⊕,≫)
allredr (⊗) = scanr(≪,≫) ◦ scan(≫,⊗)
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Composition of the Skeletons: Accumulate

Finally, we will define a complex general skeleton accumulate that can deal with ac-
cumulation parameters. This skeleton is sometimes useful to develop general theory
for skeletons. Also, we will show that the skeleton is a composition of the previous
skeletons.

The idea of this skeleton is that we can calculate the internal value of a subarray
if we know the intermediate result on the edges of upper and left subarrays. This
idea is quite natural, because the cross section of a two-dimensional array is an
edge, and the minimum information that should be transmitted between them is
the edge. As seen later, this skeleton is a general skeleton in the sense that it
contains all skeletons defined above.

accumulate (x1−◦ x2) (e, u, v1−◦ v2) = y1 ⊕′ y2
where

y1 = accumulate x1 (e, u, v1)
y2 = accumulate x2 (e2, u2, v2)
e2 = e⊕ reduce (⊕,⊗) v1
u2 = zipwith (⊕) u (reducec (⊕) (map q x1))

accumulate (x1 − ◦ x2) (e, u1 − ◦ u2, v) = y1 ⊗′ y2
where

y1 = accumulate x1 (e, u1, v)
y2 = accumulate x2 (e2, u2, v2)
e2 = e⊗ reduce (⊕,⊗) u1
u2 = zipwith (⊗) v (reducer (⊗) (map q x1))

accumulate |a| (e, |u|, |v|) = p a ((e⊗ u)⊕ (v ⊗ q a))

To create the accumulation parameters, the skeleton accumulate collapses the ar-
gument two-dimensional array with a function q and two abiding operators ⊕ and
⊗, and puts them on each element. Then, to get the result value it consumes the
accumulation parameters and the element by replacing constructors with a function
p and operators ⊕′ and ⊗′ . The meaning of the accumulation parameters is as
follows: e is the resulting value of collapsing the upper-left subarray of the argu-
ment array with the operators ⊕ and ⊗, u is the resulting row-vector of collapsing
each column of the upper subarray with the operator ⊕, and v is the resulting
column-vector of collapsing each row of the left subarray with the operator ⊗ . We
write [[(⊕′,⊗′, p), (⊕,⊗, q)]] to denote this accumulate. Here, (⊕,⊗, q) corresponds
to the computation of accumulation parameters and (⊕′,⊗′, p) corresponds to the
computation of resulting value.

The skeleton accumulate has somewhat complicated definition, however, it can
be described as a composition of the other skeletons defined above. We give here the
theorem showing the relation between accumulate and other skeletons. The functions
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dropc and dropr used in the theorem drop left-columns and upper-rows respectively:

dropc n (x − ◦ y) = y s.t. width x = n ,
dropr n (x−◦ y) = y s.t. height x = n .

This theorem is an extension of the diffusion theorem on lists [HTI99].

Theorem 3.1 (Diffusion). The skeleton accumulate can be diffused to the compo-
sition of other skeletons as follows.

[[(⊕′,⊗′, p), (⊕,⊗, q)]] x (e, u, v) = let x′ = map q x
x′′ = scan(⊕,⊗) ((|e| −◦ u)−◦ (v − ◦ x))
x′′′ = dropc 1 (dropr 1 x′′)
x′′′′ = zipwith p x x′′′

in reduce(⊕′,⊗′) x′′′′

Proof. The theorem is proved by induction on the structure of abide-trees.
The base case is proved as follows.

LHS |a| (e, |u|, |v|)
= { The left hand side }

[[(⊕′,⊗′, p), (⊕,⊗, q)]] |a| (e, |u|, |v|)
= { Definition of accumulate }

p a ((e⊗ u)⊕ (v ⊗ q a))
= { Definition of reduce }

reduce (⊕′,⊗′) |p a ((e⊗ u)⊕ (v ⊗ q a))|
= { Definition of zipwith }

let x′′′′ = zipwith p |a| |((e⊗ u)⊕ (v ⊗ q a))|
in reduce (⊕′,⊗′) x′′′′

= { Definition of scan, dropr and dropc }
let x′′ = scan (⊕,⊗) ((|e| −◦ |u|)−◦ (|v| −◦ |a|))

x′′′ = dropc 1 (dropr 1 x′′)
x′′′′ = zipwith p |a| |((e⊗ u)⊕ (v ⊗ q a))|

in reduce (⊕′,⊗′) x′′′′
= { Definition of map }

let x′ = map q |a|
x′′ = scan (⊕,⊗) ((|e| −◦ |u|)−◦ (|v| −◦ x′))
x′′′ = dropc 1 (dropr 1 x′′)
x′′′′ = zipwith p |a| |((e⊗ u)⊕ (v ⊗ q a))|

in reduce (⊕′,⊗′) x′′′′
= { The right hand side }

RHS |a| (e, |u|, |v|)
The induction case for−◦ is proved as follows.

LHS (x1−◦ x2) (e, u, v1−◦ v2)
= { The left hand side }

[[(⊕′,⊗′, p), (⊕,⊗, q)]] (x1−◦ x2) (e, u, v1−◦ v2)
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= { Definition of accumulate }
let e2 = e⊕ reduce(⊕,⊗) v1

u2 = zipwith (⊕) u (reducec(⊕) (map q x1))
y1 = accumulate x1 (e, u, v1)
y2 = accumulate x2 (e2, u2, v2)

in y1 ⊕′ y2
= { Hypothesis of induction }

let e2 = e⊕ reduce (⊕,⊗) v1
u2 = zipwith (⊕) u (reducec (⊕) (map q x1))
y1 = let x′1 = map q x1

x′′1 = scan (⊕,⊗) ((|e| −◦ u)−◦ (v1 − ◦ x′1))
x′′′1 = dropc 1 (dropr 1 x′′1)
x′′′′1 = zipwith p x1 x

′′′
1

in reduce (⊕′,⊗′) x′′′′1
y2 = let x′2 = map q x2

x′′2 = scan (⊕,⊗) ((|e2| −◦ u2)−◦ (v2 − ◦ x′2))
x′′′2 = dropc 1 (dropr 1 x′′2)
x′′′′2 = zipwith p x2 x

′′′
2

in reduce (⊕′,⊗′) x′′′′2
in y1 ⊕′ y2

= { Expansion of inner let }
let e2 = e⊕ reduce (⊕,⊗) v1

u2 = zipwith (⊕) u (reducec (⊕) (map q x1))
x′1 = map q x1
x′2 = map q x2
x′′1 = scan (⊕,⊗) ((|e| −◦ u)−◦ (v1 − ◦ x′1))
x′′2 = scan (⊕,⊗) ((|e2| −◦ u2)−◦ (v2 − ◦ x′2))
x′′′1 = dropc 1 (dropr 1 x′′1)
x′′′2 = dropc 1 (dropr 1 x′′2)
x′′′′1 = zipwith p x1 x

′′′
1

x′′′′2 = zipwith p x2 x
′′′
2

in reduce (⊕′,⊗′) x′′′′1 ⊕′ reduce (⊕′,⊗′) x′′′′2
= { Property of scan and edges proved below }

let x′1 = map q x1
x′2 = map q x2
x′′1 = scan (⊕,⊗) ((|e| −◦ u)−◦ (v1 − ◦ x′1))
x′′2 = mapr (zipwith (⊕) (bottom x′′1)) (scan (⊕,⊗) (v2 − ◦ x′2))
x′′′1 = dropc 1 (dropr 1 x′′1)

x′′′2 = dropc 1 x′′2
x′′′′1 = zipwith p x1 x

′′′
1

x′′′′2 = zipwith p x2 x
′′′
2

in reduce (⊕′,⊗′) x′′′′1 ⊕′ reduce (⊕′,⊗′) x′′′′2
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= { Combining x1 and x2 by−◦ }
let (x′1−◦ x′2) = map q (x1−◦ x2)

(x′′1−◦ x′′2) = scan (⊕,⊗) (((|e| −◦ u)−◦ (v1 − ◦ x′1))−◦ (v2 − ◦ x′2))
(x′′′1 −◦ x′′′2 ) = dropc 1 (dropr 1 (x′′1−◦ x′′2))
(x′′′′1 −◦ x′′′′2 ) = zipwith p (x1−◦ x2) (x′′′1 −◦ x′′′2 )

in reduce (⊕′,⊗′) (x′′′′1 −◦ x′′′′2 )
= { Renaming internal variables }

let x′ = map q (x1−◦ x2)
x′′ = scan (⊕,⊗) (((|e| −◦ u)−◦ ((v1−◦ v2) − ◦ x′)))
x′′′ = dropc 1 (dropr 1 x′′)
x′′′′ = zipwith p (x1−◦ x2) x′′′

in reduce (⊕′,⊗′) x′′′′
= { The right hand side }

RHS (x1−◦ x2) (e, u, v1−◦ v2)

The induction case for − ◦ is proved similarly.

To complete the above proof, we prove the following property of scan and edges.
This property says that the bottom of the result of scan to an array is equivalent
to that of scan applied to the row vector resulting by collapsing each column of the
array.

bottom (scan (⊕,⊗) x) = scan (⊕,⊗) (reducec (⊕) x)

The following instantiation of this property completes the above proof.

bottom (scan (⊕,⊗) ((|e| −◦ u)−◦ (v1 − ◦ x′1))) = scan (⊕,⊗) (|e2| −◦ u2)
where (|e2| −◦ u2) = (e⊕ reduce (⊕,⊗)v1) − ◦ (zipwith (⊕) u (reducec (⊕) x′1))

= reducec (⊕) ((|e| −◦ u)−◦ (v1 − ◦ x′1))

The property is proved by induction on the structure of abide-trees. Base case
is proved as follows.

bottom (scan (⊕,⊗) |a|)
= { Definition of scan }

bottom |a|
= { Definition of bottom }
|a|

= { Definition of scan }
scan (⊕,⊗) |a|

= { Definition of reducec }
scan (⊕,⊗) (reducec (⊕) |a|)
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Inductive case for − ◦ is proved as follows.

bottom (scan (⊕,⊗) (x1 − ◦ x2))
= { Definition of scan }

bottom (scan (⊕,⊗) x1
− ◦ mapc (zipwith(⊗) (right (scan (⊕,⊗) x1))) (scan (⊕,⊗) x2))

= { bottom distributes over − ◦ }
bottom (scan (⊕,⊗) x1)

− ◦bottom (mapc (zipwith(⊗) (right (scan (⊕,⊗) x1))) (scan (⊕,⊗) x2))
= { Promote bottom through mapc }

bottom (scan (⊕,⊗) x1)

− ◦ mapc (zipwith(⊗) (bottom (right (scan (⊕,⊗) x1)))) (bottom (scan (⊕,⊗) x2)))
= { bottom ◦ right = right ◦ bottom }

bottom (scan (⊕,⊗) x1)

− ◦ mapc (zipwith(⊗) (right (bottom (scan (⊕,⊗) x1)))) (bottom (scan (⊕,⊗) x2)))
= { Hypothesis of induction }

scan (⊕,⊗) (reducec (⊕) x1)

− ◦ mapc (zipwith(⊗) (right (scan (⊕,⊗) (reducec (⊕) x1))))
(scan (⊕,⊗) (reducec (⊕) x2))

= { Definition of scan }
scan (⊕,⊗) (reducec (⊕) x1 − ◦ reducec (⊕) x2)

= { Definition of reducec }
scan (⊕,⊗) (reducec (⊕) (x1 − ◦ x2))

Inductive case for−◦ is proved as follows.

bottom (scan (⊕,⊗) (x1−◦ x2))
= { Definition of scan }

bottom (scan (⊕,⊗) x1
−◦mapr (zipwith(⊕) (bottom (scan (⊕,⊗) x1))) (scan (⊕,⊗) x2))

= { bottom eliminates the upper subarray of−◦ }
bottom (mapr (zipwith(⊕) (bottom (scan (⊕,⊗) x1))) (scan (⊕,⊗) x2))

= { Promote bottom through mapr }
mapr (zipwith(⊕) (bottom (scan (⊕,⊗) x1))) (bottom (scan (⊕,⊗) x2))

= { Application of mapr f to a row vector is application of f to the vector }
zipwith(⊕) (bottom (scan (⊕,⊗) x1)) (bottom (scan (⊕,⊗) x2))

= { Hypothesis of induction }
zipwith(⊕) (scan (⊕,⊗) (reducec (⊕) x1)) (scan (⊕,⊗) (reducec (⊕) x2))

= { Promotion of zipwith(⊕) through scan (⊕,⊗) to row vectors }
scan (⊕,⊗) (zipwith(⊕) (reducec (⊕) x1) (reducec (⊕) x2))

= { Definition of reducec }
scan (⊕,⊗) (reducec (⊕) (x1−◦ x2))
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This theorem says that we have an efficient parallel implementation of accumulate

if the other skeletons have efficient parallel implementations. Moreover, we can write
map, reduce, scan in accumulate as follows.

map f x = [[(−◦, − ◦, λa.λe.(| · | ◦ f) a), ( , , )]] x
reduce (⊕) (⊗) x = [[(⊕,⊗, λa.λe.a), ( , , )]] x
scan (⊕) (⊗) x = [[(−◦, − ◦, λa.λe.| · | e), (⊕,⊗, id)]] x e

where e = (ı, [ı, . . . , ı], [ı, . . . , ı])
ı⊕ a = a, ı⊗ a = a

Here, ‘ ’ denotes “don’t care”. This property is sometimes useful to develop general
theory for manipulating skeletons.

Relationship between Directed and Non-directed Skeletons

It should be noted that reduce can be expressed by its directed versions reducec and
reducer, when two binary operators ⊕ and ⊗ are abiding.

reduce (⊕,⊗) = the ◦ reducec (⊕) ◦ reducer (⊗)
reduce (⊕,⊗) = the ◦ reducer (⊗) ◦ reducec (⊕)

(3.2)

Like reduce, we may define scan↓ and scan→ that are specialization of scan and
scan a two-dimensional array in column and row direction respectively:

scan↓ (⊕) = scan (⊕,≫)
scan→ (⊗) = scan (≫,⊗) ;

scan can be expressed by scan↓ and scan→ when two binary operators ⊕ and ⊗ are
abiding.

scan (⊕,⊗) = scan↓ (⊕) ◦ scan→ (⊗)
scan (⊕,⊗) = scan→ (⊗) ◦ scan↓ (⊕)

(3.3)

3.2.2 Example Complex Programs Described with Parallel
Skeletons

In this section, we will show two programs written with parallel skeletons defined
so far. One example is matrix multiplication, which will be fully described with the
skeletons. The other example is QR factorization, which will be partially described
with the skeletons, and the whole computation will be defined as a mutual recursive
function. The important point here is that we do not necessarily need to describe
the whole computation with skeletons to get parallel programs.
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Matrix Multiplication

As an involved example, we will describe a parallel algorithm for matrix multiplica-
tion, which is a primitive operation of matrices, with the defined parallel skeletons
on two-dimensional arrays.

The following program is an intuitively-understandable description of matrix
multiplication, in which an element of the resulting matrix is an inner product of
a row vector and a column vector of the input matrices. This program simply
implements the definition of matrix multiplication. Although users do not need to
consider parallelism at all, this program can be executed in parallel due to parallelism
of each skeleton.

mm = zipwithP iprod ◦ (allrows × allcols)
where

allrows = allredr( − ◦) ◦map | · |
allcols = allredc(−◦) ◦map | · |
iprod = (reduce (+,+)◦) ◦ zipwith(×) ◦ tr
zipwithP (⊗) (x, y) = zipwith (⊗) x y

Although this definition seems to use O(n3) memory space for n× n matrices due to
duplications of rows and columns with allredr and allredc, we can execute this mul-
tiplication using O(n2) memory space. This is because we can use references instead
of duplications in the implementation of allredr and allredc due to the properties of
the operators (≫ and≪) in their definitions. This kind of optimization is currently
done by hand. However, we think it will be automatically done by compilers or
libraries when they take the properties of the operators into account.

Since the program is written with skeletons, we can easily generalize the compu-
tation of matrix multiplication as follows.

gemm (⊕,⊗) = zipwithP iprod ◦ (allrows ⊗ allcols)
where

allrows = allredr ( − ◦) ◦map | · |
allcols = allredc(−◦) ◦map | · |
iprod = (reduce (⊕,⊕)◦) ◦ zipwith(⊗) ◦ tr
zipwithP (⊗) (x, y) = zipwith (⊗) x y

The generalized matrix multiplication gemm (⊕,⊗) computes the multiplication
with the given two operators ⊕ and ⊗ instead of the usual operators + and ×,
respectively. For example, the generalized matrix multiplication is useful to compute
the distance matrices with the maximum operator and the plus operator; the shortest
one-hop distances between points are computed by multiplication of matrices of
which (i, j) element is the direct distance between point i and point j. Other
application of the generalized matrix multiplication will be found in Chapter 4.3.
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QR Factorization

As the other nontrivial example, we show descriptions of two parallel algorithms
for QR factorization [EGJK04]. Given a matrix A, QR factorization computes an
orthogonal matrix Q and an upper-triangular matrix R such that A = QR. We
will not explain the details, but we hope to show that these algorithms can be dealt
with in our framework. The important point here is that the whole algorithm does
not necessarily be able to be written with skeletons, but we can write some parts
of the algorithm with skeletons, and the whole computation may be written as a
recursive function. In this case, we can do parallel computation in both those parts
described with skeletons and independent recursive calls in the recursive definition
of the algorithm.

We give the recursive description of a QR factorization algorithm based on House-
holder transform. This function returns Q and R which satisfy A = QR where A
is a matrix of m× n, Q an orthogonal matrix of m×m and R an upper-triangular
matrix of m× n.

qr ((A11−◦ A21) − ◦ (A12−◦ A22))
= let (Q1, R11−◦O) = qr (A11−◦ A21)

(R12−◦ Â22) = mm (trQ1) (A12−◦ A22)

(Q̂2, R22) = qr Â22

Q = mm Q1 ((I − ◦ O)−◦ (O − ◦ Q̂2))
in (Q, (R11 − ◦ R12)−◦ (O − ◦ R22))

qr (|a|−◦ x) = hh (|a|−◦ x)
hh v = let v′ = madd v e

a =
√

reduce (+,+) (zipwith(×) v′ v′)
u = map (/a) v′

Q = msub I (map (×2) (mm u (tr u)))
in (Q, e)

Here e is a vector (a matrix of which width is 1) whose first element is 1 and the
other elements are 0, and I and O represent an identity matrix and a zero matrix
of suitable size respectively.

Furthermore, we give the recursive description of QR factorization algorithm
on quadtree [FW03]; describing algorithms on quadtrees to those on abide-trees is
always possible because abide-trees is more flexible than quadtrees, although we
need to impose some restriction on division of the argument arrays. This function
qrq is mutual recursively defined with an extra function e, and returns Q and R that
satisfy A = QR where A is a matrix of n× n (n = 2k for a natural number k), Q is
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an orthogonal matrix of n× n and R is an upper-triangular matrix of n× n.

qrq |a| = (|1|, |a|)
qrq ((A11−◦ A21) − ◦ (A12−◦ A22))

= let (Q1, R1) = qrq A11

(Q2, R2) = qrq A21

Q12 = (Q1 − ◦ O)−◦ (O − ◦ Q2)
(Q3, R3) = e (R1, R2)
Q4 = mm Q12 Q3

(Un−◦ Us) = mm (tr Q4) (A12−◦ A22)
(Q6, R6) = qrq Us

Q = mm Q4 ((I − ◦ O)−◦ (O − ◦ Q6))
R = (R3 − ◦ Un)−◦ (O − ◦ R6)

in (Q,R)

Note that Aij (i, j ∈ {1, 2}) have the same shape. A definition of the involved extra
function e is as follows.

e (N,O) = (I,N)
e (|n|, |s|) = let Q = g(n, s)

(N,O) = mm(tr Q) (|n|−◦ |s|)
in (Q,N)

e ((N11−◦N21) − ◦ (N12−◦N22), (S11−◦ S21) − ◦ (S12−◦ S22))
= let

((Q11
1 −◦Q21

1 ) − ◦ (Q12
1 −◦Q22

1 ), N1) = e (N11, S11)
((Q11

2 −◦Q21
2 ) − ◦ (Q12

2 −◦Q22
2 ), N2) = e (N22, S22)

Q12 = (Q11
1 − ◦ O − ◦ Q12

1 − ◦ O)−◦ (O−◦Q11
2 − ◦ O − ◦ Q12

2 )
−◦ (Q21

1 − ◦ O − ◦ Q22
1 − ◦ O)−◦ (O−◦Q21

2 − ◦ O − ◦ Q22
2 )

Q1 = (Q11
1 −◦Q21

1 ) − ◦ (Q12
1 −◦Q22

1 )
(Un−◦ Us) = mm (tr Q1) (N12−◦ S12)
(Q4, R4) = qrq Us

Q′4 = (I − ◦O − ◦O − ◦O)−◦ (O − ◦I − ◦O − ◦O)
−◦ (O − ◦O − ◦Q4 − ◦O)−◦ (O − ◦O − ◦O − ◦I)

Q5 = mm Q12 Q4
′

((Q11
6 −◦Q21

6 ) − ◦ (Q12
6 −◦Q22

6 ), N6) = e (N2, R4)
Q′6 = (I − ◦O − ◦O − ◦O)−◦(O − ◦Q11

6 − ◦Q12
6 − ◦O)

−◦(O − ◦Q21
6 − ◦Q22

6 − ◦O)−◦(O − ◦O − ◦O − ◦I)
in (mm Q5 Q

′
6, (N1 − ◦ Un)−◦ (O − ◦ N6))

g (a, b) = (|c| −◦ |s|)−◦ (| − s| −◦ |c|)
where c =

a√
a2 + b2

, s =
−b√
a2 + b2

Note that Nij and Sij (i, j ∈ {1, 2}) have the same shape and Qij
k (i, j, k ∈ {1, 2})

have the same shape.
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We can efficiently parallelize some parts of these complicated recursive functions,
such as matrix multiplication and independent calculations like (Q1, R1) = qrq A11

and (Q2, R2) = qrq A21. These independent calculations are explicitly parallelized
by describing them with the map skeleton as follows.

{
(Q1, R1) = qrq A11

(Q2, R2) = qrq A21

}

⇓
|(Q1, R1)|−◦ |(Q2, R2)| = map apply (|(qrq , A11)|−◦ |(qrq , A21)|)

Here, the function apply is defined as apply (f, x) = f x. It is, however, still an
open problem whether the complicated recursive functions can be parallelized with
our defined skeletons.

3.3 Homomorphism-based Parallel Skeletons for

Trees

We will introduce the following five binary-tree skeletons, which are first proposed by
Skillicorn [Ski96]. These skeletons are basic primitives in the parallel computation
for trees.

• Two node-wise computations: mapb and zipwithb
• Two bottom-up computations: reduceb and uAccb (upwards accumulate)
• One top-down computation: dAccb (downwards accumulate)

In the following, we will give the formal denotational definition of the skele-
tons as sequential recursive functions, and show the intuitive meaning of the basic
binary-tree skeletons together with additional conditions for parallel implementa-
tion [Mat07].

Skeletons for node-wise computations

The skeletons mapb and zipwithb for node-wise computations on trees are defined as
follows.

mapb kl kn (BLeaf n) = BLeaf (kl n)
mapb kl kn (BNode l n r) = BNode (mapb kl kn l) (kn n) (mapb kl kn r)

zipwithb kl kn (BLeaf n) (BLeaf n′) = BLeaf (kl n n
′)

zipwithb kl kn (BNode l n r) (BNode l′ n′ r′)
= BNode (zipwithb kl kn l l

′) (kn n n
′) (zipwithb kl kn r r

′)
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The parallel skeleton mapb takes two functions kl and kn and a binary tree, and
applies kl to each leaf and kn to each internal node. The parallel skeleton zipwithb
takes two functions kl and kn and two binary trees of the same shape, and zips
the trees up by applying kl to each corresponding pair of leaves and kn to each
corresponding pair of internal nodes. Since the functions are applied independently
to the nodes, these two skeletons require no additional condition for their parallel
implementation.

The mapb skeleton can be defined in the form of tree homomorphism as follows.

mapb kl kn = ([k′l, k
′
n])b

where k′l a = BLeaf (kl a)
k′n l b r = BNode l (kn b) r

The zipwithb skeleton cannot be defined as a tree homomorphism, but we can for-
malize it with tree anamorphism [MFP91].

Skeletons for bottom-up computations

The skeletons reduceb and uAccb for bottom-up computations on trees are defined
as follows.

reduceb k (BLeaf n) = n
reduceb k (BNode l n r) = k (reduceb k l) n (reduceb k r)

uAccb k (BLeaf n) = BLeaf n
uAccb k (BNode l n r) = let l′ = uAccb k l

r′ = uAccb k r
in BNode l′ (k (rootb l

′) n (rootb r
′)) r′

The parallel skeleton reduceb takes a function k and a binary tree, and collapses
the tree into a value by applying the function k to each internal node in a bottom-
up manner. The parallel skeleton uAccb takes a function k and a binary tree, and
applies the function k in a bottom-up manner while putting the intermediate result
on each node. These two skeletons require an additional condition for the existence
of an efficient parallel implementation of them. The skeletons reduceb and uAccb
called with parameter function k require the existence of four auxiliary functions φ,
ψn, ψl, and ψr satisfying the following three equations.

k x n y = ψn x (φ n) y
ψn (ψn n

′ x y) n r = ψn x (ψl n
′ n r) y

ψn l n (ψn n
′ x y) = ψn x (ψr l n n

′) y

The reduceb and uAccb skeletons can be defined in the form of tree homomor-
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phism as follows.

reduceb k = ([id , k])b

uAccb k = ([k′l, k
′
n])b

where k′l a = BLeaf a
k′n l b r = BNode l (k (rootb l) b (rootb r)) r

Skeleton for top-down computations

The skeleton dAccb for top-down computations on trees is defined as follows.

dAccb (gl, gr) c (BLeaf n) = BLeaf c
dAccb (gl, gr) c (BNode l n r) = BNode (dAccb (gl, gr) (gl c b) l) c

(dAccb (gl, gr) (gr c b) r)

The parallel skeleton dAccb takes a pair of functions gl and gr, a parameter
c and a binary tree. This skeleton updates parameter c in a top-down manner
using gl for the left child and gr for the right child, and puts the parameter c on
each node. The parameter c is called accumulative parameter. This skeleton also
requires an additional condition for an efficient parallel implementation. The dAccb
skeleton called with parameter functions gl and gr requires the existence of auxiliary
functions φl, φr, ψu, and ψd satisfying the following three equations.

gl c n = ψd c (φl n)
gr c n = ψd c (φr n)
ψd (ψd c n) m = ψd c (ψu n m)

The dAccb skeleton can be defined as the following higher-order tree homomor-
phism.

dAccb (gl, gr) c = λt.([k′l, k
′
n])b t c

where k′l a = λc′.BLeaf c′

k′n fl b fr = λc′.BNode (fl (gl c
′ b)) c′ (fr (gr c

′ b))

Worth noting is the application scope of the binary-tree skeletons under the
conditions for parallel implementations. Our conditions cover a wider class of tree
manipulations than those introduced by Skillicorn [Ski94, Ski96] do. For algebraic
tree computations our conditions cover the same class as those studied by Abra-
hamson et al. [ADKP89], even though they are specified in a different way.

Example programming with the tree skeletons can be found in [Mat07, Ski97],
which includes XPath queries [BBC+06] and maximum marking problems [SHTO00,
Bir01] on trees.
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Implementation of Parallel Tree Skeletons

The defined parallel tree skeletons can be implement efficiently in parallel for many
parallel architectures.

The binary tree skeletons have parallel implementation based on tree contraction
algorithms [MR85,ADKP89,RT94,BSWB02,MW97,CV88,DH98,LM88]. Here, let
the model of parallel computers be EREW PRAM with P processors, and N denote
the number of nodes of a tree. We assume that all the functions including auxiliary
functions passed to skeletons are computed sequentially in constant time, and that
the conditions of the reduceb, uAccb and dAccb are satisfied. The mapb and zipwithb
skeletons can be implemented just by applying functions independently to each node,
and they run in O(N/P ) parallel time. The reduceb skeleton can be implemented
by tree contraction algorithms and it runs in O(N/P + logP ) parallel time. The
uAccb and dAccb skeletons are generalized computational patterns of the algebraic
tree computations [ADKP89], and Gibbons et al. [GCS94] developed parallel imple-
mentations of them based on tree contraction algorithms. With their implementa-
tions, the uAccb and dAccb skeletons can be computed in O(N/P + logP ) parallel
time. In other words, the mapb and zipwithb skeletons achieve linear speedup under
P ≤ O(N), and the reduceb, uAccb, and dAccb skeletons achieve linear speedup
under P ≤ O(N/ logN).

Although the original tree contraction algorithms have been designed for shared-
memory computers, Matsuzaki [Mat07] has adapted the algorithms for use in dis-
tributed parallel machines. With their implementation, the tree skeletons achieve
linear speedup under P ≤ O(

√
N).

Please refer for the details to Matsuzaki’s thesis [Mat07], because the implemen-
tation is too complicated to show here.



Chapter 4

Fusion Optimizations of Parallel
Skeletons

It has been shown so far that compositions of homomorphisms and skeletons provide
us with a powerful mechanism to describe parallel algorithms, where parallelism in
the original parallel algorithms can be well captured. In this chapter, we move on
from issues of parallelism to the issues of efficiency.

Since skeleton programs are developed in the compositional style, they often
have overheads of redundantly many loops and unnecessary intermediate data. To
make skeleton programs efficient, not only each skeleton is implemented efficiently
in parallel, but also optimizations over skeleton compositions are necessary.

The inefficiency problem arises also in sequential programming of the composi-
tional style, and much research has been done deeply to solve the problem in the
field of functional programming. One well known technique to solve the problem
is fusion optimization [Wad88,GLJ93,TM95,Sve02], in which consecutive functions
are fused into one function to remove redundant generation of intermediate data
structures between them.

In this chapter, we will study domain-independent fusion optimizations to im-
prove efficiency of skeleton compositions. Fusion of consecutive skeletons is impor-
tant and effective, since it can remove redundant generation of intermediate data
structures. It is especially effective in the case that elements of the input arrays have
some structures, such as nested lists and arrays, because the overhead of allocation
and deallocation of elements becomes serious and sometimes it becomes the main
reason of inefficiency.

First, we will study fusion optimization of list skeletons, in which the good
fusibility of the homomorphism plays an important role. Then, we will proceed to
fusion optimization of skeletons on two-dimensional arrays. After that, using the
fusion optimizations, we will show derivation of non-trivial efficient program for the
maximum rectangle sum problem on two-dimensional arrays. A general derivation
strategy with fusions will be given there.
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4.1 Useful Fusion Laws for Skeletons on Lists

We will introduce several interesting algebraic laws for fusion of list skeletons. We
will first introduce an important law of homomorphism. Then, we will derive inter-
esting laws for skeletons from the law of homomorphism.

4.1.1 Fusion of List Homomorphism

Homomorphism enjoys many nice transformation rules, among which the following
fusion rule is of particular importance. The fusion rule gives us a way to create a
new homomorphism from composition of a function and a homomorphism, which
plays a key role in derivation of efficient parallel programs.

Lemma 4.1 (Fusion law of list homomorphism [Bir88]). Let g and ([f,⊕]) be given.
If there exists ⊙ such that for any x and y the equation

g (x⊕ y) = g x⊙ g y

holds, then

g ◦ ([f,⊕]) = ([g ◦ f,⊙]) .

Proof. The lemma is proved by induction on the structure of lists.

Here, we will show an example fusion of the program sum ◦ double, which doubles
all elements of a list and sums them up. Its fusion is shown below.

sum ◦ double
= { double is a homomorphism }

sum ◦ ([[·] ◦ dbl ,++])
= { sum (x++ y) = sum x+ sum y, and the fusion lemma }

([sum ◦ [·] ◦ dbl ,+])
= { sum ◦ [·] = id }

([dbl ,+])

This fused function is efficient because it has no intermediate data, while the original
program has intermediate data between two functions sum and double .

4.1.2 Fusion Laws for Skeletons

We will introduce some instances of the homomorphism fusion. Since the fusion
theorem requires us to derive new operator satisfying the condition, automatic use
of the theorem is difficult. Thus, we will instantiate the theorem for easy use of
fusions.

We first show an interesting law that shows any homomorphism can be written
as a composition of map and reduce. In other words, a composition of map and
reduce can be fused into one homomorphism.
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Lemma 4.2 (Homomorphism [Bir88]). A homomorphism ([f,⊕]) can be written as
a composition of map and reduce:

([f,⊕]) = reduce (⊕) ◦map f .

Proof. We can prove the lemma with Lemma 4.1, substituting reduce (⊕) and
map f = ([[·] ◦ f,++]) for the function g and the homomorphism ([f,⊕]) in the lemma,
respectively.

This lemma implies that if we have efficient parallel implementations for reduce
and map, we get an efficient implementation for homomorphism. Conversely, it
implies that we can compute efficiently the composition of two skeletons if we have
efficient implementation for homomorphism.

The following lemma eliminates intermediate data between two maps by fusing
them into a single map.

Lemma 4.3 (Map-map fusion). The following equation holds for any functions f
and g.

map g ◦map f = map (g ◦ f)

Proof. We can prove the lemma with Lemma 4.1, substituting map g and map f =
([[·] ◦ f,++]) for the function g and the homomorphism ([f,⊕]) in the lemma, respec-
tively.

This lemma is useful because we can fuse a sequence of maps into only one map;
we can write a program step by step with many maps, and we can get efficient
program by fusing them with the lemma.

4.1.3 Accumulate-buildJ Fusion

We will introduce another fusion based on a general form of skeletons on lists [HIT02],
of which foundation is also the homomorphism. The general form is called accumulate

The general form accumulate is equivalent to a specific composition of other skele-
tons, and thus can represent various computation of skeleton compositions. It is
defined as follows.

accumulate (⊕) p (⊗) q g x c = let es ++ [e] = scan (⊗) ([c] ++map q x)
ac = zip x es

in reduce (⊕) (map p ac) ⊕ g e

We will denote the accumulate (⊕) p (⊗) q g with special brackets [[g, (p,⊕), (q,⊗)]].
The fusion using accumulate is based on the idea of short-cut fusions [Wad88,

GLJ93], in which the generation of intermediate data structures between a producer
and a consumer is canceled by fusing the producer and the consumer. We will
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use the skeleton accumulate as a consumer, and the following function buildJ as a
producer.

buildJ gen = gen (++) [·] [ ]
We can express the list skeletons by using the functions defined above.

map f = buildJ (λc s e. [[λ−.e, (s ◦ f ◦ π1, c), (−,−)]])
reduce (⊕) = [[λ−.ı⊕, (π1,⊕), (−,−)]]
scan (⊕) x = buildJ (λc s e. [[s, (λ(a, e

′). s e′, c), (id,⊕)]]) x ı⊕
The following theorem gives us the fusion rule to fuse the skeletons described

with accumulate and buildJ.

Theorem 4.4 (BuildJ-accumulate-buildJ fusion). Provided that function gen have
the type forall α.(α→ α→ α)→ (β → α)→ α→ α, the following equation holds.

buildJ (λc s e. [[g, (p,⊕), (q,⊗)]]) (buildJ gen x) e
= π1 (buildJ (λc s e. gen (⊙) f d) x e)

where (u⊙ v) e = let (r1, s1, t1) = u e
(r2, s2, t2) = v (e⊗ t1)

in (s1 ⊕ r2, s1 ⊕ s2, t1 ⊗ t2)
f a e = (p (a, e)⊕ g (e⊗ q a), p (a, e), q a))
d e = (g e,−,−)

A variant of the above fusion rule is the following buildJ-cataJ-buildJ rule.

buildJ (λc s e. [[λ−.φ1, (φ2 ◦π1, φ3), (−,−)]]) ◦ (buildJ gen) = buildJ (λc s e.gen φ1 φ2 φ3)

For example, we can fuse two maps into one map using the above rule as follows.

map f ◦map g
= { description of map with buildJ }

buildJ (λc s e. [[λ−.e, (s ◦ f ◦ π1, c), (−,−)]])
◦ buildJ (λc s e. [[λ−.e, (s ◦ g ◦ π1, c), (−,−)]])

= { the fusion rule }
buildJ (λc s e. [[λ−.e, (s ◦ f ◦ g ◦ π1, c), (−,−)]])

= { description of map with buildJ }
map (f ◦ g)

4.2 Useful Fusion Laws for Skeletons on Two-

dimensional Arrays

We will introduce several interesting algebraic laws for fusion of two-dimensional
array skeletons. We will first introduce an important law of homomorphism. Then,
we will derive interesting laws for skeletons from the law of homomorphism.
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4.2.1 Fusion of Homomorphism for Two-dimensional Arrays

Homomorphism enjoys many nice transformation rules, among which the following
fusion rule is of particular importance. The fusion rule gives us a way to create a
new homomorphism from composition of a function and a homomorphism. As will
be seen in Chapter 4.3, it plays a key role in derivation of efficient parallel programs
on abide-trees.

Theorem 4.5 (Fusion law of abide-tree homomorphism). Let g and ([f,⊕,⊗]) be
given. If there exist ⊙ and ⊖ such that for any x and y the following equations

{
g (x⊕ y) = g x⊙ g y
g (x⊗ y) = g x⊖ g y

hold, then

g ◦ ([f,⊕,⊗]) = ([g ◦ f,⊙,⊖]) .

Proof. The theorem is proved by induction on the structure of abide-trees.

The base case is shown below.

(g ◦ ([f,⊕,⊗])) |a|
= { Definition of ([f,⊕,⊗]) }

g (f a)
= { Definition of ([g ◦ f,⊙,⊖]) }

([g ◦ f,⊙,⊖]) |a|

Then, the inductive case for−◦ is shown as follows.

(g ◦ ([f,⊕,⊗])) (x−◦ y)
= { Definition of ([f,⊕,⊗]) }

g (([f,⊕,⊗]) x⊕ ([f,⊕,⊗]) y)
= { Definition of h }

g (([f,⊕,⊗]) x)⊙ g (([f,⊕,⊗]) y)
= { Hypothesis of induction }

([g ◦ f,⊙,⊖]) x⊙ ([g ◦ f,⊙,⊖]) y
= { Definition of ([g ◦ f,⊙,⊖]) }

([g ◦ f,⊙,⊖]) (x−◦ y)

The inductive case for − ◦ is proved similarly.

Here, we will show an example fusion of the program sum ◦ allsquare, which
squares all elements of the input and sums them up. Definitions of sum and allsquare
are given as follows: sum = ([id ,+,+]) and allsquare = ([| · | ◦ sqr ,−◦, − ◦]), where
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sqr x = x2. Its fusion is shown below.

sum ◦ allsquare
= { allsquare is a homomorphism }

sum ◦ ([| · | ◦ sqr ,−◦, − ◦])
=

{

the fusion with

{
sum (x−◦ y) = sum x+ sum y
sum (x − ◦ y) = sum x+ sum y

}

([sum ◦ | · | ◦ sqr ,+,+])
= { sum ◦ | · | = id }

([sqr ,+,+])

This fused function is efficient because it has no intermediate data, while the original
program has intermediate data between two functions sum and allsquare .

4.2.2 Fusion Laws of Skeleton Compositions

Although the fusion law of homomorphism is very strong, there is a problem that we
have to find the new operators ⊙ and ⊖ for the given function g, and this is difficult
in general. Therefore, we will derive more easy-to-use fusion laws for skeletons from
the homomorphism’s fusion law.

The first fusion law shows that any homomorphism can be written as a compo-
sition of map and reduce. In other words, the pair of map and reduce can be fused
into a homomorphism.

Lemma 4.6 (Homomorphism). A homomorphism ([f,⊕,⊗]) can be written as a
composition of map and reduce:

([f,⊕,⊗]) = reduce (⊕,⊗) ◦map f .

Proof. We can prove the lemma with Theorem 4.5, substituting reduce (⊕,⊗) and
map f = ([| · | ◦ f,−◦, − ◦]) for the function g and the homomorphism ([f,⊕,⊗]) in the
statement, respectively.

The next lemma gives us a way to fuse consecutive maps into one map.

Lemma 4.7 (Map-map fusion). For any functions f and g, two consecutive maps
are fused into one map as follows.

map g ◦map f = map (g ◦ f)

Proof. We can prove the lemma with Theorem 4.5, substituting map g and map f =
([| · | ◦ f,−◦, − ◦]) for the function g and the homomorphism ([f,⊕,⊗]) in the statement,
respectively.
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Using the above two lemmas, we can optimize the following naively composed
skeleton program for computing the second moment (variance) with the parameter
c against an array. The definition of the second moment of an array a(i,j) is as
follows:

∑

i,j(a(i,j) − c)2. Here, we can use reduce (+,+) to compute the sum,
map sqr to take squares, and map (subtract c) to take the subtractions, where
subtract c x = x− c, and sqr x = x2.

sndMom c = reduce (+,+) ◦map sqr ◦map (subtract c)

Now, we perform calculation with the above fusion lemmas.

sndMom c
= { Map-map fusion of Lemma 4.7 }

reduce (+,+) ◦map (sqr ◦ subtract c)
= { Map-reduce fusion of Lemma 4.6 }

([sqr ◦ subtract c,+,+])

Now, if we have implementation of the homomorphism, we can compute the second
moment without any intermediate data structure. Or, at least we can compute the
second moment with only one intermediate data structure using implementations of
reduce and map skeletons. In both cases, the fused program has less intermediate
data structures and thus more efficient than the original naive program.

4.3 Developing Efficient Programs with Parallel

Skeletons

In this section, we will illustrate a strategy to guide programmers to develop efficient
parallel algorithms systematically through program transformation with the fusion
laws. Recall homomorphisms have efficient parallel implementation. Thus, a goal
of this derivation may be to write a program by a homomorphism. We will focus
on developing parallel programs on two-dimensional arrays, although the strategy
is applicable for other data structures.

Unfortunately, not all functions can be specified by a single homomorphism.
Therefore, we first introduce a more powerful tool called almost-homomorphism
[Col95]. After that, we will introduce two important theorems for deriving efficient
programs, one of which is the special case of the fusion law of homomorphism. Then,
we demonstrate the strategy with an example problem.

4.3.1 Almost-homomorphism

Not all functions can be specified by a single homomorphism, but we can always
tuple these functions with some extra functions so that the tupled functions can
be specified by a homomorphism. An almost homomorphism is a composition of a
projection function and a homomorphism.
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Definition 4.8 (Almost-homomorphism). A function g is said to be almost-
homomorphism, if g is defined as a composition of a homomorphism ([f,⊕,⊗]) and
a projection function π1 as follows.

g = π1 ◦ ([f,⊕,⊗])

Since projection functions are simple, almost homomorphisms are suitable for
parallel computation as homomorphisms are.

In fact, every function can be represented in terms of an almost homomorphism
at the cost of redundant computation. Let k be a nonhomomorphic function, and
consider a new function g such that g x = (k x, x). The tupled function g can be a
homomorphism as follows.

g |a| = (k |a|, |a|)
g (x−◦ y) = g x⊕ g y

where (k1, x1)⊕ (k2, x2) = (k (x1−◦ x2), x1−◦ x2)
g (x − ◦ y) = g x⊗ g y

where (k1, x1)⊗ (k2, x2) = (k (x1 − ◦ x2), x1 − ◦ x2)

Since the first component of the result of g is the result of k, we have the following
equation:

k = π1 ◦ g = π1 ◦ ([g ◦ | · |,⊕,⊗]) .

This equation shows that k is an almost-homomorphism.
However, the definition above is not efficient because binary operators ⊕ and

⊗ do not use the previously computed values k1 and k2. In order to derive a good
almost homomorphism, we should carefully define a suitable tupled function, making
full use of previously computed values. We will see this in our parallel program
development later. It is an open problem to determine the class of problems that
have good (efficient) almost-homomorphic implementation.

4.3.2 Two Theorems for Deriving Efficient Parallel Programs

We will introduce two important theorems for deriving efficient parallel programs
using almost-homomorphism.

First, we will propose a way of deriving almost homomorphism from mutual
recursive definitions. For notational convenience, we define

in

1
fi = f1 △ f2 △ · · · △ fn

x(
in

1
⊕i)y = (x⊕1 y, x⊕2 y, . . . , x⊕n y) .

Our main idea is based on the following theorem.
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Theorem 4.9 (Tupling).
Let h1, h2, . . . , hn be mutual recursively defined by







hi |a| = fi a ,
hi (x−◦ y) = ((

an
1hi) x)⊕i ((

an
1hi) y) ,

hi (x − ◦ y) = ((
an

1hi) x)⊗i ((
an

1hi) y) .
(4.10)

Then
an

1hi is a homomorphism ([
an

1 fi,
an

1⊕i,
an

1 ⊗i ]) .

Proof. The theorem is proved based on the definition of homomorphisms. According
to the definition of array homomorphisms, it is sufficient to prove that

(
an

1hi) |a| = (
an

1fi) a ,
(
an

1hi) (x−◦y) = ((
an

1hi) x) (
an

1⊕i) ((
an

1hi) y) ,
(
an

1hi) (x − ◦y) = ((
an

1hi) x) (
an

1⊗i) ((
an

1hi) y) .

The first equation is proved by the following calculation.

(
an

1hi) |a|
= { Definition of

a
}

(h1 |a|, . . . , hn |a|)
= { Definition of hi }

(f1 a, . . . , fn a)
= { Definition of

a }
(
an

1fi) a

The second is proved as follows.

(
an

1hi) (x−◦ y)
= { Definition of

a }
(h1 (x−◦ y), . . . , hn (x−◦ y))

= { Definition of hi }
(((

an
1hi) x)⊕1 ((

an
1hi) y), . . . , ((

an
1hi) x)⊕n ((

an
1hi) y))

= { Definition of
a
}

((
an

1hi) x) (
an

1⊕i) ((
an

1hi) y)

The third is proved similarly.

Theorem 4.9 says that if function h1 is mutually defined with other functions (i.e.,
h2, . . . , hn) which traverse over the same array in the specific form of Eq. (4.10), then
tupling h1, . . . , hn will give a homomorphism. It follows that every hi is an almost
homomorphism.

Next, we will give the following theorem showing how to fuse a function with
an almost homomorphism to get new another almost homomorphism, which is an
extension of the fusion theorem of homomorphism(Theorem 4.5).
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Theorem 4.11 (Almost Fusion).
Let h and ([

an
1 fi,

an
1⊕i,

an
1 ⊗i ]) be given. If there exist ⊙i,⊖i (i = 1, . . . , n) and

H = h1 × h2 × · · · × hn (h1 = h) such that for any i, x and y,

hi (x⊕i y) = H x⊙i H y

hi (x⊗i y) = H x⊖i H y

hold, then

h◦(π1◦([
an

1 fi,
an

1⊕i,
an

1 ⊗i ])) = π1◦([
an

1 (hi◦fi),
an

1⊙i,
an

1 ⊖i ]) . (4.12)

Proof. The theorem is proved by some calculation and Theorem 4.5.
We prove it by the following calculation.

h ◦ (π1 ◦ ([
an

1 fi,
an

1⊕i,
an

1 ⊗i ]))
= { Definition of H and π1 }
π1 ◦H ◦ ([

an
1 fi,

an
1⊕i,

an
1 ⊗i ])

= { Theorem 4.5 and the proofs below }
π1 ◦ ([

an
1 (hi ◦ fi),

an
1⊙i,

an
1 ⊖i ])

To complete the above proof, we need to show






H ◦ (an
1fi) =

an
1 (hi ◦ fi)

H(x (
an

1⊕i) y) = (H x) (
an

1⊙i) (H y)
H(x (

an
1⊗i) y) = (H x) (

an
1⊖i) (H y) .

These equations are proved as follows.

(H ◦ (an
1fi)) a

= { Definition of
a

and H }
((h1 ◦ f1) a, . . . , (hn ◦ fn) a)

= { Definition of
a }

(
an

1 (hi ◦ fi)) a

H (x (
an

1⊕i) y)
= { Definition of

a
and H }

(h1 (x⊕1 y), . . . , hn (x⊕n y))
= { Assumption of hi }

((H x)⊙1 (H y), . . . , (H x)⊙n (H y))
= { Definition of

a }
(H x) (

an
1⊙i) (H y)

The third is similar to the second, and can be proved similarly.

Theorem 4.11 says that we can fuse a function with an almost homomorphism to
get another almost homomorphism by finding h2, . . . , hn together with ⊙1, . . . ,⊙n,
⊖1, . . . ,⊖n that satisfy Eq. (4.12).
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4.3.3 A Strategy for Deriving Efficient Parallel Programs

Now, we will give a strategy to derive efficient parallel program using almost-
homomorphism and the theorems.

Our strategy for deriving efficient parallel programs on two-dimensional arrays
consists of the following four steps, extending the result of lists [HIT97]. The goal
of the strategy is to write a given program by an efficient almost-homomorphism
that has an efficient implementation in parallel.

Step 1. Define the target program p as a composition of p1, . . . , pn that are already
defined, i.e. p = pn ◦ · · · ◦ p1. Each of p1, . . . , pn may be defined as a
composition of small functions or a recursive function.

Step 2. Derive an almost homomorphism from the recursive definition of p1 using
the tupling of Theorem 4.9.

Step 3. Fuse p2 into the derived almost homomorphism to obtain a new almost
homomorphism for p2 ◦ p1, and repeat this derivation until pn is fused. In
this step, we can use the almost-fusion of Theorem 4.11.

Step 4. Let π1 ◦ ([f,⊕,⊗]) be the resulting almost homomorphism for pn ◦ · · · ◦ p1 ob-
tained at Step 3. For the functions inside the homomorphism, namely f , ⊕
and ⊗, try to repeat Steps 2 and 3 to find efficient parallel implementations
for them.

The key idea is to make a seed almost-homomorphism from p1 by the tupling, and
make the almost-homomorphism bigger by fusing the functions p2, . . . , pn.

4.3.4 Deriving an Efficient Parallel Program for Maximum
Rectangle Sum Problem

Now, we demonstrate the strategy through a derivation of an efficient program
for the maximum rectangle sum problem: compute the maximum of sums of all
rectangle areas in a two-dimensional data. This problem was originated by Bent-
ley [Ben84a,Ben84b] and improved by Takaoka [Tak02]. The solution can be used in
a sort of data mining and pattern matching of two dimensional data. For example,
for the following two-dimensional data





3 −1 4 −1 −5
1 −4 −1 5 −3
−4 1 5 3 1





the result should be 15, which denotes the maximum sum contributed by the sub-
rectangular area with bold numbers above. To appreciate difficulty of this problem,
we ask the reader to pause for a while to think of how to solve it.
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Step 1. Defining a Clear Parallel Program

We can compute the maximum rectangle sum as follows: enumerating all possible
rectangles, then computing sums for all rectangles, and finally returning the max-
imum value as the result. Therefore, a clear, straightforward program mrs can be
described as follows.

mrs = max ◦map sum ◦ rects ′
where
max = reduce (↑, ↑)
sum = reduce (+,+)
rects ′ = flatten ◦map TLs ◦ BRs
TLs = scan (−◦, − ◦) ◦map | · |
BRs = scanr (−◦, − ◦) ◦map | · |

Here, rects ′ generates all possible rectangles of the given array, using TLs and BRs to
generate top-left and bottom-right rectangles, respectively. For example, applying

TLs, BRs, and rects ′ to

(
1 2 3
4 5 6

)

, we get the following results.

TLs
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)
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Apparently, mrs is a clear parallel program, because it is described with skeletons
and easy to understand. However, it is inefficient in the sense that it needs to execute
O(n6) addition operations for the input of n×n array. Therefore, we want to develop
a more efficient parallel program according to the strategy.

Step 2. Driving Almost Homomorphism

The second step is to make a seed almost-homomorphism for the following steps.
To this end, we will first do “dilation” of the function rects ′. Then, we will derive a
seed almost-homomorphism.

Although the current mrs is clear to understand, the function rects ′ to generate
all possible rectangles cuts information of rectangles too much to manipulate the
program further. Therefore, we “dilate” the function rects ′ to hold more information
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in the result. The dilation is given as follows (please see Appendix D for the proof
of the dilation).

rects ′ = pack ◦ rects
where pack = flatten ◦ unwind−◦ ◦map unwind − ◦

unwind⊕ |a| = |a|
unwind⊕ (|a| −◦ x) = |a| ⊕ reduce ( ,⊕) (map | · | x)
unwind⊕ ((|a| −◦ x)−◦ (NIL − ◦ y)) = unwind⊕ (|a| −◦ x)⊕ unwind⊕ y

Here, rects is a dilated function to generate possible rectangles of the given array,
and function pack removes information of dilated structures by the function unwind .
An example use of rects is shown below. The return value of rects is an array of
arrays of arrays; the (k, l)-element of the (i, j)-element of the resulting array is a
sub-rectangle consisting of the rows from the ith to the jth and the columns from
the kth to the lth of the original array. Note that the dilated structure contains
special value NIL to denote blank portions of the above-mentioned array. NIL is
seen as a suitable-size array (of arrays) of −∞ (the identity of ↑).

rects
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Here is a precise definition of the function rects . Function rects is mutual recur-
sively defined with functions bottoms , tops , rights , and lefts (Figure 4.1) as follows.

rects |a| = |||a|||
rects (x−◦ y) = (rects x − ◦ gemm( , zipwith(−◦)) (bottoms x) (tops y))

−◦(NIL − ◦ rects y)
rects (x − ◦ y) = zipwith4 fs (rects x) (rects y) (rights x) (lefts y)

where fs s1 s2 r1 l2 = (s1 − ◦ gemm( , − ◦) r1 l2)−◦(NIL − ◦ s2)

where ‘ ’ indicates “don’t care”, and generalized matrix multiplication gemm is
defined as follows1. Here, we assume that the division of argument arrays are con-

1Actually, we have defined the same function gemm(⊕,⊗) in the previous section in the different
from. But, both definitions returns the same result.
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sistent.

gemm(⊕,⊗) = g
where g (X1 − ◦ X2) (Y1−◦ Y2) = zipwith(⊕) (g X1 Y1) (g X2 Y2)

g (X1−◦X2)Y = (g X1 Y )−◦ (g X2 Y )
g X (Y1 − ◦ Y2) = (g X Y1) − ◦ (g X Y2)
g |a| |b| = |a⊗ b|

Figure 4.2 shows recursive computation of rects for the −◦ case. Since indices i
and j of the resulting array mean the top row and the bottom row of the generated
rectangles within the original array, the upper-left block (i ≤ mx and j ≤ mx) of
the resulting array contains rectangles included in the upper block x of the original
array. Thus, the upper-left block is equal to rects x. Similarly, the lower-right block
is rects y (Figure 4.2-(a)). Each rectangle in the the upper-right block (i ≤ mx and
j > mx) consists of a rectangle touching the bottom of x and a rectangle touching
the top of y as shown in Figure 4.2-(b). Since we have to consider all combinations
of i and j, we compute this block by a general matrix multiplication on bottoms x
and tops y as shown in Figure 4.2-(c). The computation of the−◦ case is similar.

Functions bottoms , tops , rights , and lefts are similarly defined as mutual recur-
sive functions shown in Figure 4.1, and their examples are shown in Figure 4.3.
Each of these functions is the partial result of rects in the sense that it returns
the rectangles that are restricted to include some edges of the input as shown in
Figure 4.4. For example, the tops returns the rectangles that include the top edges
(the top-most row) of the input array. Similarly, bottoms , rights and lefts return
the rectangles that include the bottom edges, the right edge and the left edge re-
spectively. The other functions returns the rectangles that include two edges of the
input. Usually, users do not need to understand well these functions because those
well-used functions are provided by experts.

The function pack gives us the relation between the dilated structure and the
original structure. It uses the function unwind to unfold the dilated triangular
structures. Its image is shown below.

unwind − ◦





a b c
d e

f



 = (a b c d e f)

The function unwind − ◦ similarly unfolds the dilated triangular structures into column
vectors.

It is easily seen the following equation, because the function pack simply changes
the dilated structure and does not change the values, and a reduction of the special
value NIL results in the identity of ↑.

max ◦map sum ◦ pack = max ◦map max ◦map (map sum)

The dilation is important for derivation of efficient parallel programs on two-
dimensional arrays, so that we can successfully derive operators that satisfy the
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tops |a| = |||a|||
tops (x−◦ y) = tops x − ◦ map (zipwith(−◦) (cols ′ x)) (tops y)
tops (x − ◦ y) = zipwith

4
ft (tops x) (tops y) (toprights x) (toplefts y)

where ft t1 t2 tr1 tl2 = (t1 − ◦ gemm ( , − ◦) tr1 tl2)−◦ (NIL − ◦ t2)
bottoms |a| = |||a|||
bottoms (x−◦ y) = map (λz. zipwith(−◦) z (cols ′ y)) (bottoms x)−◦ bottoms y
bottoms (x − ◦ y) = zipwith

4
fb (bottoms x) (bottoms y) (bottomrights x) (bottomlefts y)

where fb b1 b2 br1 bl2 = (b1 − ◦ gemm ( , − ◦) br1 bl2)−◦ (NIL − ◦ b2)
rights |a| = |||a|||
rights (x−◦ y) = (rights x − ◦ gemm ( , zipwith(−◦)) (bottomrights x) (toprights y))

−◦(NIL − ◦ rights y)
rights (x − ◦ y) = zipwith

3
fr (rights x) (rights y) (rows ′ y)

where fr r1 r2 ro2 = map ( − ◦ro2) r1−◦ r2
lefts |a| = |||a|||
lefts (x−◦ y) = (lefts x − ◦ gemm ( , zipwith(−◦)) (bottomlefts x) (toplefts y))−◦ (NIL − ◦ lefts y)
lefts (x − ◦ y) = zipwith

3
fl (lefts x) (lefts y) (rows ′ x)

where fl l1 l2 ro1 = l1 − ◦ map (ro1 − ◦) l2
toprights |a| = |||a|||
toprights (x−◦ y) = toprights x − ◦ map (zipwith(−◦) (right ′ (toprights x))) (toprights y)
toprights (x − ◦ y) = zipwith ftr (toprights x) (toprights y)

where ftr tr1 tr2 = map ( − ◦top′ tr2) tr1−◦ tr2
bottomrights |a| = |||a|||
bottomrights (x−◦ y) = map (λz. zipwith(−◦) z (top′ (bottomrights y))) (bottomrights x)

−◦bottomrights y
bottomrights (x − ◦ y) = zipwith fbr (bottomrights x) (bottomrights y)

where fbr br1 br2 = map ( − ◦top′ br2) br1−◦ br2
toplefts |a| = |||a|||
toplefts (x−◦ y) = toplefts x − ◦ map (zipwith(−◦) (right ′ (toplefts x))) (toplefts y)
toplefts (x − ◦ y) = zipwith ftl (toplefts x) (toplefts y)

where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1 − ◦) tl2
bottomlefts |a| = |||a|||
bottomlefts (x−◦ y) = map (λz. zipwith(−◦) z (top′ (bottomlefts y))) (bottomlefts x)

−◦bottomlefts y
bottomlefts (x − ◦ y) = zipwith fbl (bottomlefts x) (bottomlefts y)

where fbl bl1 bl2 = bl1 − ◦ map (right ′ bl1 − ◦) bl2
cols ′ |a| = ||a||
cols ′ (x−◦ y) = zipwith(−◦) (cols ′ x) (cols ′ y)
cols ′ (x − ◦ y) = (cols ′ x − ◦ gemm ( , − ◦) (right (cols ′ x)) (top (cols ′ y)))−◦ (NIL − ◦ cols ′ y)
rows ′ |a| = ||a||
rows ′ (x−◦ y) = (rows ′ x − ◦ gemm ( ,−◦) (right (rows ′ x)) (top (rows ′ y)))−◦ (NIL − ◦ rows ′ y)
rows ′ (x − ◦ y) = zipwith( − ◦) (rows ′ x) (rows ′ y)
top = reduce(≪, − ◦) ◦map | · |
bottom = reduce(≫, − ◦) ◦map | · |
right = reduce(−◦,≫) ◦map | · |
left = reduce(−◦,≪) ◦map | · |

top′ = the ◦top
bottom ′ = the ◦bottom
right ′ = the ◦right
left ′ = the ◦left

Figure 4.1. Auxiliary functions for rects .
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rets xmxmx rets ymymy Z != !rets xnmx ymx
j

i(a)
rxry ijk l

x
y (b)

Z = �bottoms x tops y
()

Figure 4.2. Recursive computation of rects.
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rets �a b d�=0BBBBBB���a� �a b��b� � 0BB��a� �a b d��bd� 1CCA��� � d��d� �
1CCCCCCAtops �a b d�=0BB���a� �a b��b� � 0BB��a� �a b d��bd� 1CCA1CCA bottoms �a b d�=0BBBBBB�0BB��a� �a b d��bd� 1CCA��� � d��d� �

1CCCCCCArights �a b d�=0BBBBBB���a b��b� � 0BB��a b d��bd� 1CCA�� d��d� �
1CCCCCCA lefts �a b d�=0���a� �a b�� ��a� �a b d����� � d�� 1A

toprights �a b d�=0BB���a b��b� � 0BB��a b d��bd� 1CCA1CCA bottomrights �a b d�=0BBBBBB�0BB��a b d��bd� 1CCA�� d��d� �
1CCCCCCAtoplefts �a b d�=���a� �a b�� ��a��a b d��� bottomlefts �a b d�=0���a� �a b d����� � d�� 1Aols �a b d�=0BB��a� �a b d��bd� 1CCA rows �a b d�=0��a b� �a b d�� d� 1A

Figure 4.3. Examples of auxiliary functions for rects.
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sbl br
tl tr
l rb

t
r

Figure 4.4. Corresponding parts of elements in the tuple.

abide property. Usually, operands of operators with the abide property should have
capability for computation in two directions. The dilated information is very useful
to create the capability.

Now, our program is described as follows, and our goal of this step is to make the
first function rects an almost-homomorphism. The tupling theorem (Theorem 4.9)
gives us a systematic way to execute this step of the strategy.

mrs = max ◦map max ◦map (map sum) ◦ rects

We apply the tupling theorem to derive an almost homomorphism for rects. The
definition of rects and the extra functions are in the form of Eq. (4.10). Thus, we can
obtain the almost homomorphism shown in Figure 4.5 by tupling these functions.
The operators are straightforward rewriting of the definition of rects.

Step 3. Fusing with Almost Homomorphisms

We aim to derive an efficient almost homomorphism for mrs. The almost-fusion
theorem (Theorem 4.11) gives us a systematic way to execute this step the strategy.

Now, we will apply this theorem to mrs repeatedly.

The second function p2 of our example ismap (map sum), so h1 = map (map sum).
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rects = π1 ◦ (
i11

1
hi) = π1 ◦ ([

i11

1
fi,

i11

1
⊕i,

i11

1
⊗i ])

where
a11

1 fi |a| = (|||a|||, |||a|||, |||a|||, |||a|||, |||a|||, |||a|||, |||a|||, |||a|||, |||a|||, ||a||, ||a||)
(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (

a11
1 ⊕i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where
s0 = (s1 − ◦ gemm ( , zipwith(−◦)) b1 t2)−◦ (NIL − ◦ s2)
t0 = t1 − ◦ map (zipwith(−◦) c1) t2
b0 = map (λz. zipwith(−◦) z c2) b1−◦ b2
r0 = (r1 − ◦ gemm ( , zipwith(−◦)) br1 tr2)−◦ (NIL − ◦ r2)
l0 = (l1 − ◦ gemm ( , zipwith(−◦)) bl1 tl2)−◦ (NIL − ◦ l2)
tr0 = tr1 − ◦ map (zipwith(−◦) (right ′ tr1)) tr2
br0 = map (λz. zipwith(−◦) z (top ′ br2)) br1−◦ br2
tl0 = tl1 − ◦ map (zipwith(−◦) (right ′ tl1)) tl2
bl0 = map (λz. zipwith(−◦) z (top ′ bl2)) bl1−◦ bl2
c0 = zipwith(−◦) c1 c2
ro0 = (ro1 − ◦ gemm ( ,−◦) (right ro1) (top ro2))−◦ (NIL − ◦ ro2)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (
a11

1 ⊗i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)
= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where
s0 = zipwith4 fs s1 s2 r1 l2

where fs s1 s2 r1 l2 = (s1 − ◦ gemm ( , − ◦) r1 l2)−◦ (NIL − ◦ s2)
t0 = zipwith4 ft t1 t2 tr1 tl2

where ft t1 t2 tr1 tl2 = (t1 − ◦ gemm ( , − ◦) tr1 tl2)−◦ (NIL − ◦ t2)
b0 = zipwith4 fb b1 b2 br1 bl2

where fb b1 b2 br1 bl2 = (b1 − ◦ gemm ( , − ◦) br1 bl2)−◦ (NIL − ◦ b2)
r0 = zipwith3 fr r1 r2 ro2

where fr r1 r2 ro2 = map ( − ◦ro2) r1−◦ r2
l0 = zipwith3 fl l1 l2 ro1

where fl l1 l2 ro1 = l1 − ◦ map (ro1 − ◦) l2
tr0 = zipwith ftr tr1 tr2

where ftr tr1 tr2 = map ( − ◦top′ tr2) tr1−◦ tr2
br0 = zipwith fbr br1 br2

where fbr br1 br2 = map ( − ◦top′ br2) br1−◦ br2
tl0 = zipwith ftl tl1 tl2

where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1 − ◦) tl2
bl0 = zipwith fbl bl1 bl2

where fbl bl1 bl2 = bl1 − ◦ map (right ′ bl1 − ◦) bl2
c0 = (c1 − ◦ gemm ( , − ◦) (right c1) (top c2))−◦ (NIL − ◦ c2)
ro0 = zipwith( − ◦) ro1 ro2

Figure 4.5. Almost-homomorphism definition of rects.
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Then, we calculate h1 (x⊕1 y) to find other functions and operators.

h1 (x⊕1 y)
= { Expand x, y and h1 }
map (map sum) ((s1 − ◦ gemm( , zipwith(−◦)) b1 t2)−◦ (NIL − ◦ s2))

= { Definition of map }
(map (map sum)s1 − ◦ map (map sum) (gemm( , zipwith(−◦)) b1 t2))

−◦(NIL − ◦ map (map sum)s2)
= { Promotion of map, folding }
(h1 s1 − ◦ gemm( , zipwith(+))(map (map sum) b1) (map (map sum) t2))

−◦(NIL − ◦ h1 s2)

In the last formula, functions applied to t1 and b1 should be h2 and h3, respectively,
which suggests us to define h2, h3 and ⊙1 as follows.

h1 = h2 = h3 = map (map sum)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1)

⊙1 (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s1 − ◦ gemm ( , zipwith(+)) b1 t2)−◦ (NIL − ◦ s2)

Similarly, we can derive ⊖1 by calculating h1 (x⊗1 y) as follows.

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1)

⊖1 (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= zipwith4 fs s1 s2 r1 l2

where fs s1 s2 r1 l2 = (s1 − ◦ gemm( ,+) r1 l2)−◦(NIL − ◦ s2)

Deriving the other functions and operators by doing similar calculation about ⊕i

and ⊗i, we finally get the program shown in Figure 4.6. In this derivation, the
function H appeared in Theorem 4.11 is as follows:

H = h× h× h× h× h× h× h× h× h× (map sum)× (map sum)
where h = map (map sum) .

Some calculation rules used in this derivation are listed in Appendix A.
We will repeat application of the theorem to our example. Applying the the-

orem again with the third function p3 = map max , we obtain another almost-
homomorphism shown in Figure 4.7 with H = (map max ) × id × id × id × id ×
id × id × id × id × id × id .

Finally, applying such fusion with max will yield the result shown in Figure 4.8.
The function H for the final fusion is as follows:

H =max × (reduce ( , zipwith(↑)))× (reduce (zipwith(↑), ))× (map (reduce (↑, )))
× (map (reduce ( , ↑)))× (reduce ( , − ◦))× (reduce ( − ◦, ))
× (reduce ( ,−◦))× (reduce (−◦, ))× id × id
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map (map sum) ◦ rects = π1 ◦ ([
i11

1
f ′i ,

i11

1
⊙i,

i11

1
⊖i ])

where
a11

1 f ′i |a| = (||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, |a|, |a|)
(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (

a11
1 ⊙i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where
s0 = (s1 − ◦ gemm ( , zipwith(+)) b1 t2)−◦ (NIL − ◦ s2)
t0 = t1 − ◦ map (zipwith(+) c1) t2
b0 = map (λz. zipwith(−◦) z c2) b1−◦ b2
r0 = (r1 − ◦ gemm ( , zipwith(+)) br1 tr2)−◦ (NIL − ◦ r2)
l0 = (l1 − ◦ gemm ( , zipwith(+)) bl1 tl2)−◦ (NIL − ◦ l2)
tr0 = tr1 − ◦ map (zipwith(+) (right ′ tr1)) tr2
br0 = map (λz. zipwith(+) z (top ′ br2)) br1−◦ br2
tl0 = tl1 − ◦ map (zipwith(+) (right ′ tl1)) tl2
bl0 = map (λz. zipwith(+) z (top ′ bl2)) bl1−◦ bl2
c0 = zipwith(+) c1 c2
ro0 = (ro1 − ◦ gemm ( ,+) (right ro1) (top ro2))−◦ (NIL − ◦ ro2)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (
a11

1 ⊖i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)
= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where
s0 = zipwith4 fs s1 s2 r1 l2

where fs s1 s2 r1 l2 = (s1 − ◦ gemm ( ,+) r1 l2)−◦ (NIL − ◦ s2)
t0 = zipwith4 ft t1 t2 tr1 tl2

where ft t1 t2 tr1 tl2 = (t1 − ◦ gemm ( ,+) tr1 tl2)−◦ (NIL − ◦ t2)
b0 = zipwith4 fb b1 b2 br1 bl2

where fb b1 b2 br1 bl2 = (b1 − ◦ gemm ( ,+) br1 bl2)−◦ (NIL − ◦ b2)
r0 = zipwith3 fr r1 r2 ro2

where fr r1 r2 ro2 = map (+ro2) r1−◦ r2
l0 = zipwith3 fl l1 l2 ro1

where fl l1 l2 ro1 = l1 − ◦ map (ro1+) l2
tr0 = zipwith ftr tr1 tr2

where ftr tr1 tr2 = map (+top′ tr2) tr1−◦ tr2
br0 = zipwith fbr br1 br2

where fbr br1 br2 = map (+top ′ br2) br1−◦ br2
tl0 = zipwith ftl tl1 tl2

where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1+) tl2
bl0 = zipwith fbl bl1 bl2

where fbl bl1 bl2 = bl1 − ◦ map (right ′ bl1+) bl2
c0 = (c1 − ◦ gemm ( ,+) (right c1) (top c2))−◦ (NIL − ◦ c2)
ro0 = zipwith(+) ro1 ro2

Figure 4.6. Derived efficient program of map (map sum) ◦ rects .
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map max ◦map (map sum) ◦ rects = π1 ◦ ([
i11

1
f ′′i ,

i11

1
⊙′i,

i11

1
⊖′i ])

where
a11

1 f ′′i |a| = (|a|, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, ||a||, |a|, |a|)
(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (

a11
1 ⊙′i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where
s0 = (s1 − ◦ mapmax (gemm ( , zipwith(+)) b1 t2))−◦ (NIL − ◦ s2)
t0 = t1 − ◦ map (zipwith(+) c1) t2
b0 = map (λz. zipwith(−◦) z c2) b1−◦ b2
r0 = (r1 − ◦ gemm ( , zipwith(+)) br1 tr2)−◦ (NIL − ◦ r2)
l0 = (l1 − ◦ gemm ( , zipwith(+)) bl1 tl2)−◦ (NIL − ◦ l2)
tr0 = tr1 − ◦ map (zipwith(+) (right ′ tr1)) tr2
br0 = map (λz. zipwith(+) z (top ′ br2)) br1−◦ br2
tl0 = tl1 − ◦ map (zipwith(+) (right ′ tl1)) tl2
bl0 = map (λz. zipwith(+) z (top ′ bl2)) bl1−◦ bl2
c0 = zipwith(+) c1 c2
ro0 = (ro1 − ◦ gemm ( ,+) (right ro1) (top ro2))−◦ (NIL − ◦ ro2)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (
a11

1 ⊖′i) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)
= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where
s0 = zipwith4 fs s1 s2 r1 l2

where fs s1 s2 r1 l2 = s1 ↑ max (gemm ( ,+) r1 l2) ↑ s2
t0 = zipwith4 ft t1 t2 tr1 tl2

where ft t1 t2 tr1 tl2 = (t1 − ◦ gemm ( ,+) tr1 tl2)−◦ (NIL − ◦ t2)
b0 = zipwith4 fb b1 b2 br1 bl2

where fb b1 b2 br1 bl2 = (b1 − ◦ gemm ( ,+) br1 bl2)−◦ (NIL − ◦ b2)
r0 = zipwith3 fr r1 r2 ro2

where fr r1 r2 ro2 = map (+ro2) r1−◦ r2
l0 = zipwith3 fl l1 l2 ro1

where fl l1 l2 ro1 = l1 − ◦ map (ro1+) l2
tr0 = zipwith ftr tr1 tr2

where ftr tr1 tr2 = map (+top′ tr2) tr1−◦ tr2
br0 = zipwith fbr br1 br2

where fbr br1 br2 = map (+top′ br2) br1−◦ br2
tl0 = zipwith ftl tl1 tl2

where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1+) tl2
bl0 = zipwith fbl bl1 bl2

where fbl bl1 bl2 = bl1 − ◦ map (right ′ bl1+) bl2
c0 = (c1 − ◦ gemm ( ,+) (right c1) (top c2))−◦ (NIL − ◦ c2)
ro0 = zipwith(+) ro1 ro2

Figure 4.7. Derived efficient program of map max ◦map (map sum) ◦ rects
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mrs = π1 ◦ ([
i11

1
f ′′′i ,

i11

1
⊙′′i ,

i11

1
⊖′′i ])

where

(
a11

1 f ′′′i ) |a| = (a, |a|, |a|, |a|, |a|, |a|, |a|, |a|, |a|, |a|, |a|)
(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (

a11
1 ⊙′′i ) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)

= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)
where
s0 = (s1 ↑ max (zipwith(+) b1 t2) ↑ s2
t0 = zipwith3 ft t1 c1 t2

where ft t1 c1 t2 = t1 ↑ (c1 + t2)
b0 = zipwith3 fb b1 c2 b2

where fb b1 c2 b2 = (b1 + c2) ↑ b2
r0 = (r1 − ◦ gemm (↑,+) (tr br1) tr2)−◦ (NIL − ◦ r2)
l0 = (l1 − ◦ gemm (↑,+) bl1 (tr tl2))−◦ (NIL − ◦ l2)
tr0 = tr1 − ◦ mapc (zipwith(+) (right tr1)) tr2
br0 = mapc (zipwith(+) (left br2)) br1 − ◦ br2
tl0 = tl1−◦mapr (zipwith(+) (bottom tl1)) tl2
bl0 = mapr (zipwith(+) (top bl2)) bl1−◦ bl2
c0 = zipwith(+) c1 c2
ro0 = (ro1 − ◦ gemm( ,+) (right ro1) (top ro2))−◦ (NIL − ◦ ro2)

(s1, t1, b1, r1, l1, tr1, br1, tl1, bl1, c1, ro1) (
a11

1 ⊖′′i ) (s2, t2, b2, r2, l2, tr2, br2, tl2, bl2, c2, ro2)
= (s0, t0, b0, r0, l0, tr0, br0, tl0, bl0, c0, ro0)

where
s0 = s1 ↑ max (zipwith(+) r1 l2) ↑ s2
t0 = (t1 − ◦ gemm (↑,+) tr1 tl2)−◦ (NIL − ◦ t2)
b0 = (b1 − ◦ gemm (↑,+) br1 bl2)−◦ (NIL − ◦ b2)
r0 = zipwith3 fr r1 r2 ro2

where fr r1 r2 ro2 = (r1 + ro2) ↑ r2
l0 = zipwith3 fl l1 l2 ro1

where fl l1 l2 ro1 = l1 ↑ (ro1 + l2)
tr0 = mapr (zipwith(+)(top tr2)) tr1−◦ tr2
br0 = mapr (zipwith(+)(top br2)) br1−◦ br2
tl0 = tl1 − ◦ mapc (zipwith(+) (right tl1)) tl2
bl0 = bl1 − ◦ mapc (zipwith(+) (right bl1)) bl2
c0 = (c1 − ◦ gemm( ,+) (right c1) (top c2))−◦ (NIL − ◦ c2)
ro0 = zipwith(+) ro1 ro2

Figure 4.8. The final efficient program of maximum rectangle sum.
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+b1t2s1s2
x1
x2 i j

(a)
+max br1tr2r1r2

x1
x2 k ij(b)

Figure 4.9. Computation of the operator for derived mrs .

In the final program, each of the eleven elements of the resulting tuple is the
partial answer of its counterpart in Figure 4.4. Some parts are calculated with a
general matrix multiplication, and others are updated with map and zipwith. For
example, the element s0, which is the solution of the maximum rectangle sum, is
either the maximum of the solutions of upper and lower subarray, or the maximum
of the solutions generated by combining partial answers of the top and the bottom
rectangles, as shown in Figure 4.9-(a). Here, the rectangles that share the same edge
are combined by zipwith(+). Similarly, some elements of the array r0, which is the
partial solutions of the rectangles on the right edge, are calculated with a general
matrix multiplication as shown in Figure 4.9-(b). Here, (i, j) element in the block
is the maximum of br 1(i, k) + tr 2(k, j) for all k.

Provided that we divide the input array into two parts evenly, this final parallel
program uses only O(n3) addition operations as follows. For an n × n input array,
the program’s cost T (n, n) satisfies the next equation with gemm’s cost Tgemm(n, n)
and some constants c1 and c2.

T (n, n) = 4T (n/2, n/2) + c1Tgemm(n/2, n/2) + c2n
2

Since the cost of the general matrix multiplication (gemm) is O(n3), the answer of
the above equation is T (n, n) = O(n3). This is much better than the initial one.
Moreover, since the general matrix multiplication gemm(↑,+) used in the program
is a distance matrix multiplication, we can achieve subcubic cost with the special
implementation of the gemm(↑,+) used in Takaoka’s algorithm [Tak02]. However,
the implementation is somewhat tricky, so that we cannot describe it with our
skeletons.

Step 4. Optimizing Inner Functions

For our example, we may proceed to optimize the operators and functions such as
f ′′′i , ⊙′′i and ⊖′′i in the program of Step 3. Since they cannot be made efficient any
more, we finish our derivation of an efficient parallel program.
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4.4 Related Work

There have been several studies on the optimizations over multiple skeletons based on
fusion transformations [GWL99,WL98,HIT02,MKI+04,GS06], which were studied
in depth in the field of functional programming [Wad88, GLJ93]. In particular,
general fusion optimizations on lists [GWL99,WL98,HIT02,MKI+04] have achieved
good results both in theory and in practice.

Wedler and Lengauer [WL98] proposed fusion rules on a computation pattern
called parallel linear recursion. Their parallel linear recursion can perform almost
equivalent computation to accumulate, except that parallel linear recursion explicitly
return a pair of a value and a list to allow arbitrary number of compositions. Their
formalization is close to cellular automaton.

Gorlatch et al. [GWL99] proposed a set of fusion rules for skeletons. Their rules
can deal with similar skeleton compositions that the above research can handle,
although their rules are, if anything, case by case.





Chapter 5

Domain-Specific Optimization for
Skeleton Programs

Although the general fusion optimizations so far are reasonably powerful, there
is still large room for further optimizations. Due to the generality of the fusion
transformations, some overheads in skeleton programs are left through the fusion
optimizations. Also, effective optimization of complicated skeleton compositions by
fusion often needs human insights to make efficient operators or functions used in
the fused results.

The above problem can be solved when we make fusion optimizations specific to
some domain, exploiting knowledge of the domain. This specific fusion optimization
may include fusion rules specific to the domain, and shortcuts to the fused results
with human insights.

In this chapter, we will concentrate on optimization of skeleton programs for
computation involving neighbor elements. The computation can be categorized into
two types: the computation involving a finite number of neighbor elements, such
as filtering of sequences and images, the finite difference method, and some matrix-
vector operations; and the computation involving an infinite number of neighbor
elements, such as queries of interesting segments on lists and rectangles (sub-arrays)
on two-dimensional arrays.

First, we will develop domain-specific fusion rules for computation involving a
finite number of neighbor elements. To this end, we will introduce a new strategy
for developing domain-specific fusion optimization of skeleton programs. Then, we
will develop the fusion optimization demonstrating the strategy.

Next, we will proceed to optimization of skeleton programs involving an infinite
number of elements. To this end, we will formalize the computation by nested
reductions, and develop shortcut theorems to provide efficient algorithms to nested
reductions by fusion.
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5.1 General Strategy for Domain-Specific Fusion

Optimization

In skeletal parallel programming, domain-specific programs are often developed with
a fixed set of skeletons composed in a specific manner. Based on this observation,
we propose the following strategy for developing domain-specific optimizations.

1. Designing a normal form that abstracts target specific computations.

2. Developing specific fusion rules that can completely transform skeleton com-
positions of specific patterns into the normal forms.

3. Providing efficient implementations of the normal form.

In designing a normal form, we should have the following requirements in mind.
A normal form is specified to describe any computation of target programs but
should not be too general. A normal form should be specific to the target programs,
and should enable us to develop efficient implementation for it. In addition, a normal
form should be closed under the fusion rules to maintain the result of optimization
in the form.

Once we formalize a normal form with fusion rules and efficient implementation,
we can perform the optimization easily: we first transform a skeleton program into
the normal form with the fusion rules, and then we dispatch a suitable efficient
implementation to the obtained normal form, in which the implementation may be
selected according to some mathematical properties of parameters in the normal
form.

The big difference from the existing general fusions is that our domain-specific
fusions are closed under the target compositions. A big problem of the general
fusions is that no one know how widely the general fusions can fuse skeletons in the
given programs. They sometimes can not fuse any consecutive skeletons successfully.
For example, no proposed general fusion can fuse parallel skeletons zip and reduce.

Another difference is that the optimized program results in implementation spe-
cific to the domain of target programs. The general fusions use general computation
patterns as the results of fusions, which may cause significant inefficiency due to
their generality.

5.2 Computation Involving a Finite Number of

Neighbor Elements

We demonstrate our strategy by developing optimization of skeleton programs for
computation that involves neighbor elements, which is often seen in scientific compu-
tations. In this section, we will concentrate on the computation for one-dimensional
data structures, and use skeleton on lists shown in Chapter 2.
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First, we will define the target domain as a pattern of skeleton compositions.
Next, we will design the normal form to describe computations of the domain. Then,
we will develop domain-specific fusion that transforms skeleton compositions of the
specific pattern into normal forms. After that, we will design parallel implementation
for the normal form. Finally, we will extend the target domain to handle reductions
and accumulations.

The optimization developed in this section mainly focuses on domain-specific
fusions, and has only one pattern of efficient implementations for the normal form.
We will develop another optimization in the next section, which will focus on various
theorems used to dispatch efficient implementations for the normal form under some
conditions on parameters.

5.2.1 Target Skeleton Composition Patterns

Our targets are skeleton programs that involve neighbor elements using combination
of shift≪, shift≫, zip and map. We also deal with skeleton programs that perform one
accumulation or one reduction by scan′ (scanr′) or reduce on the result of the above
programs. We define the former program as Program, a program with accumulation
as ProgramS , and a program with reduction as ProgramR. A program of ProgramS

can have arbitrary number of map after scan′ or scanr′.

data Program α = map (β → α) (Program β)
| shift≪ α (Program α)
| shift≫ α (Program α)
| zip (Program β) (Program γ)
| [α]

data ProgramS α = scan (α→ α→ α) α (Program α)
| scanr (α→ α→ α) α (Program α)
| map (β → α) (ProgramS β)

data ProgramR α = reduce (α→ α→ α) (Program α)

Here, Program α and ProgramS α are programs that generate lists of elements of
type α, while ProgramR α is a program that generates a value of type α. Type β in
map is bound locally. Types β and γ in zip are bound by the relation α = (β, γ).
For simplicity, we do not use binding of variables in the above skeleton programs.
Since the above skeleton programs are inputs for optimization algorithms, we dis-
tinguish skeletons in the above skeleton programs from skeletons used in algorithms
by attaching underlines.

Evaluation of the above defined program is given by the following evalP , evalPS
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and evalPR, which evaluate the programs straightforwardly.

evalP :: Program α→ [α]
evalP (map f x) = map f (evalP x)
evalP (shift≪ e x) = shift≪ e (evalP x)
evalP (shift≫ e x) = shift≫ e (evalP x)
evalP (zip y z) = zip (evalP y) (evalP z)
evalP (x) = x

evalPS :: ProgramS α→ [α]
evalPS (scan (⊕) e x) = scan′ (⊕) e (evalP x)
evalPS (scanr (⊕) e x) = scanr′ (⊕) e (evalP x)
evalPS (map f x) = map f (evalPS x)

evalPR :: ProgramR α→ α
evalPR (reduce (⊕) x) = reduce (⊕) (evalP x)

In the rest of this section, we mainly focus on Program α to explain our idea of
the domain-specific fusion. Then, we discuss ProgramS α and ProgramR α in Section
5.2.5 as extensions of the optimization of Program α.

A Running Example

An example target problem is computation of a numerical solution of differential
equations by difference methods, in which each elements of the solution is computed
form its neighboring elements. We will use a simple program for difference method
as our running example.

Let’s consider the following wave-equation as a concrete differential equation.

∂u

∂t
= −C∂u

∂x

This equation describes propagation of waves. To calculate the propagation of waves,
we replace differential terms by differences. The value of u at time n and at location
i is denoted by uni .

un+1
i − uni
∆t

=
−C
∆x

(
a−2u

n
i−2 + a−1u

n
i−1 + a0u

n
i + a1u

n
i+1

)

where (a−2, a−1, a0, a1) = (1/6,−1, 1/2, 1/3)

Here, we use a difference computed from two elements on the left and an element on
the right. Rearranging the above equation, we get the following recurrence equation.

un+1
i = c−2u

n
i−2 + c−1u

n
i−1 + c0u

n
i + c1u

n
i+1

Now, let’s consider a program next to compute the values at the next time from
the current values of u. Here, we will use simple boundary conditions: un−1 = bl0 ,
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un0 = bl1 and unN+1 = br for a fixed N . We can implement next using skeletons as
follows.

next u = let v′−2 = map (c−2×) (shift≫ bl0 (shift≫ bl1 u))
v′−1 = map (c−1×) (shift≫ bl1 u)
v′0 = map (c0×) u
v′1 = map (c1×) (shift≪ br u)
v− = map add (zip v′−2 v

′
−1)

v+ = map add (zip v′0 v
′
1)

in map add (zip v− v+)

Here, intermediate variables v′−2, v
′
−1, v

′
0, and v′1 are used for readability; we can

easily remove these variables to make the program fit to the composition pattern
Program of target programs. The correspondence of the program next and the above
recurrence equation is as follows. First, we generate a list v′−2 corresponding to a
sequence of the first terms c−2u

n
i−2. To this end, we first apply two shift≫ to shift

the elements twice to the right, so that the shifted lists has the value uni−2 at the
position of uni in the input list u. Then, we use map to multiply the coefficient c−2 to
the elements. Figure 5.1 illustrates the arrangement of shifted elements. Similarly,
lists corresponding to the second through the fourth terms are generated by using
shift≪, shift≫ and map. Then, zipping these four lists by zip and adding elements
by map add , we obtain the final result, of which ith element is c−2ui−2 + c−1ui−1 +
c0ui + c1ui+1.

In the following sections, we will explain our idea by using this example program
next .

5.2.2 Normal Form for the Domain

The first step of our strategy is to design a normal form that can describe any
computation of target programs. In this section, we formalize a normal form that
describes the computation of Program α. The objective of this normal form is to hold
necessary information to compute the result, which will be collected from skeleton
compositions by domain-specific fusions.

Example of Normal Form

Let’s consider a single-loop computation of the running example next . By a simple
observation, its computation can be divided into three parts according to forms of
computations of elements: the computation of the center elements, which involves
only elements of the given list; the computation of elements on the left edge, which
involves constants introduced by shift≫; and the computation of elements on the
right edge, which involves constants introduced by shift≪. Figure 5.1 illustrates the
three parts.
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In the computation of next , each element in the center part is computed by the
following expression. Here, u denotes the element concerned, u≪2 denotes its second
left element, u≪1 its left element, and u≫1 its right element.

ce = “add(add(c−2×u≪2, c−1×u≪1), add(c0×u, c1×u≫1))”

This expression is common among the computation of elements in the center part.
On the other hand, the leftmost element is computed by the following expression.

Here, u
−→
[k] denotes the kth element of u from the left edge.

l1 = “add(add(c−2×bl0 , c−1×bl1), add(c0×u
−→
[0], c1×u

−→
[1]))”

This computation involves variables (u
−→
[0] and u

−→
[1]) and constants (bl0 and bl1) in-

troduced by shift≫. Similarly, computation of the second element and the rightmost

element involves constants. Here, u
←−
[k] denotes kth element of u from the right edge.

l2 = “add(add(c−2×bl1 , c−1×u
−→
[0]), add(c0×u

−→
[1], c1×u

−→
[2]))”

r1 = “add(add(c−2×u
←−
[2], c−1×u

←−
[1]), add(c0×u

←−
[0], c1×br))”

Summarizing these observations, whole computation of next can be denoted by
the following triple of expressions, i.e., computation trees.

• The list of computation trees for elements on the left edge, i.e., [l1, l2].
• The common computation tree for elements in the center part, i.e., ce.
• The list of computation trees for elements on the right edge, i.e., [r1].

Figure 5.2 shows these computation trees. To obtain the result from this triple, we
compute each element on the edges by its computation tree, and compute elements
on the center part by the common computation tree against indices in a single loop.

Generally, such a triple denotes a computation of a target skeletal program.
Thus, in the next section, we formalize this triple as a normal form of our target
skeletal programs. Transformation of a skeleton program into a normal form is later
shown in Section 5.2.3.

Definition of Normal Form for the Domain

We will define structure of our normal form. A normal form is defined as a triple of
the following three as argued so far: a list of computation trees for elements on the
left edge, a common computation tree for the center part, and a list of computation
trees for elements on the right edge.

type NForm α = ([Tree α],Tree α, [Tree α])

We denote this triple with special brackets like [[ ls , zms , rs ]]. Here, ls is the list of
computation trees for the left edge, zms is the common computation tree for the
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computation with
introduced constants

common computation
except for the index i

computation with
introduced constants

b0

b1

u
−→
[0]

u
−→
[1]

b1

u
−→
[0]

u
−→
[1]

u
−→
[2]

u
−−−→
[i− 2]

u
−−−→
[i− 1]

u
−→
[i]

u
−−−→
[i + 1]

u
←−
[2]

u
←−
[1]

u
←−
[0]

b2

l1 l2 ce r1

shift≫ b0 (shift≫ b1 u)

shift≫ b1 u

u

shift≪ b2 u

[[ ]][ , ] [ ]

Figure 5.1. Lists arranged by shifts and regions of elements calculated by triples for
next . A list of computation trees for elements on the left edge [l1, l2]. A common
computation tree for elements in the center part ce. A list of computation trees for
elements on the right edge [r1]. Elements involved in the computation are boxed by
dashed lines.
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Figure 5.2. The triple describing computation of next .

center part, and rs is the list of computation trees for the right edge. Computation
trees in normal forms are defined as follows.

data Tree α = Node ((β, γ)→ α) (Tree β) (Tree γ)
| Leafv (β → α) (Var β)
| Leafc α

data Var α = Var [α] Int
| Fix [α] Int Direction
| Hole

data Direction = FromL | FromR

A node of the tree holds the left and right children zipped by zip, and a composed
function applied by successive maps. There are two kinds of leaves: Leafc denotes
a constant introduced by shift≪ or shift≫, and Leafv denotes input lists and holds a
composed function applied by successive maps. The data structure Var α denotes
access to the input lists: Var represents index access of lists in the center part;
and Fix represents fixed-index access in computations of edge elements. Therefore,
Var holds the list and the amount of shifting, while Fix holds the following three:
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the input list to be accessed, the index, and the origin of the index. The origin
of the fixed index is specified by Direction. A special value Hole will be used in
formalization of parallel implementation, which indicates that an element of other
processor will fill out the hole to complete the tree.

For example, expression add(c−2×bl1 , c−1×u
−→
[0]) is described as follows.

Node add (Leafc (c−2×bl1)) (Leafv (c−1×) (Fix u 0 FromL))

A part c−2×u≪2 of common tree is described as follows.

Leafv (c−2×) (Var u (−2))

Note that negative value of the amount of shifting means shifting to the left.

Semantics of Normal Form

We will give a semantics of the normal form by sequential evaluation of the normal
form. In the evaluation, elements in the center part are computed by a single loop
with the common computation tree, and each element on both edges is computed
by its own computation tree.

First, we define the evaluation of computation trees as evaluation function evalT .

evalT :: Tree α→ Int → α
evalT (Node f l r) i = f (evalT l i, evalT r i)
evalT (Leafv f v) i = f (evalV v i)
evalT (Leafc c) i = c

The evaluation function evalT performs computation according to the definition of
computation trees, applying functions stored in the trees to the elements of the
input lists along with the tree structures. It flows the index of the element being
computed through the evaluation to the other evaluation function evalV . The aux-
iliary function evalV processes index accessing of input lists. The result of evalV for
Hole is not defined.

evalV :: Var α→ Int → α
evalV (Var u s) i = at u (i− s)
evalV (Fix u s FromL) = at u s
evalV (Fix u s FromR) = at (reverse u) s

Here, function at returns the element at the given index, and defined as follows.

at i (a : x) = if i = 0 then a else at (i− 1) x

Next, we will define the evaluation function evalT0 for elements on the left and right
edges. The evaluation is defined by evalT ignoring the index.

evalT0 :: Tree α→ α
evalT0 x = evalT x 0
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Then, using the above evaluation functions, we define a sequential program eval
that evaluates the normal form. Here, the lengths of involved lists are supposed to
be n.

eval :: NForm α→ [α]
eval [[ ls , zms , rs ]] = map evalT0 ls ++map (evalT zms) idces ++map evalT0 rs

where l = length ls ; r = length rs
idces = [l..(n− r − 1)]

Each element on both edges is calculated by its own computation tree using evalT0

defined above. The center part is calculated by a single loop (map (evalT zms)) with
the common computation tree.

5.2.3 Fusion Rules for Transformation to a Normal Form

The second step of our strategy is to define fusion rules to transform skeleton com-
positions to normal forms. These rules should be able to transform any of the target
skeleton compositions to normal forms. In this section, we give fusion rules to trans-
form a skeleton program Program (see Section 5.2.1) into the normal form defined
so far.

We first give formal definition of the fusion rules. Then, we will show example
transformations with the fusion rules.

Transformation with Fusion Rules

We will define function compile that transforms a skeleton program into the normal
form by one-by-one application of fusion rules.

compile :: Program α→ NForm α
compile (map f x) = fuseMap f (compile x)
compile (shift≪ e x) = fuseShift≪ e (compile x)
compile (shift≫ e x) = fuseShift≫ e (compile x)
compile (zip x y) = fuseZip (compile x) (compile y)
compile (x) = [[ [ ],Leafv id (Var x 0), [ ] ]]

Fusion rules for skeletons are defined as functions fuseMap, fuseShift≪, fuseShift≫,
and fuseZip, which will be define below. Figure 5.3 illustrates the fusion rules.

Fusion Rule for map

Fusion of skeleton map is performed by composing the given function to roots of
computation trees.

fuseMap :: (α→ β)→ NForm α→ NForm β
fuseMap f [[ ls , zms , rs ]] = [[map (comp f) ls , comp f zms ,map (comp f) rs ]]
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⇓
map f

⇓
shift≫ e

(a) Fusion of map composes the given function to
each tree of the normal form. The structure of
the normal form is not changed.

(b) Fusion of shift≫ discards the rightmost compu-
tation tree and introduces a new constant tree
to the leftmost. The amount of shifting in the
tree for center part is updated by 1.

⇓
shift≪ e

zip

⇓

(c) Fusion of shift≪ discards the leftmost compu-
tation tree and introduces a new constant tree
to the rightmost. The amount of shifting in the
tree for center part is updated by −1.

(d) Fusion of zip instantiates the shaded parts so
that the sizes of lists of trees for edges become
uniform, and zips the corresponding trees.

Figure 5.3. An image of fusion rules. Rectangles represent lists. The three parts
separated by vertical lines correspond to the triple of the normal form. Changed
parts in the resulting normal form are shaded.

Composition of a function is given by the following comp.

comp :: (α→ β)→ Tree α→ Tree β
comp f (Node g l r) = Node (f ◦ g) l r
comp f (Leafv g v) = Leafv (f ◦ g) v
comp f (Leafc c) = Leafc (f c)

For non-constant roots, comp composes the given function to the function held in
the root. For constant roots (i.e. constant leaves), comp applies the given function
to the constant to generate a new constant root.

Fusion Rules for shift≪ and shift≫

Fusion of skeletons shift≪ and shift≫ is performed by insertion and deletion of the
leftmost and the rightmost trees, and update of the amount of shifting.

fuseShift≪ :: α→ NForm α→ NForm α
fuseShift≪ e [[ ls , zms , rs ]] = [[ tail ls , slide (−1) zms , rs ++ [Leafc e] ]]
fuseShift≫ :: α→ NForm α→ NForm α
fuseShift≫ e [[ ls , zms , rs ]] = [[ [Leafc e] ++ ls , slide 1 zms , init rs ]]

For the left-shift, the fusion discards the leftmost computation tree, and introduces
the constant computation tree of the given constant e to the rightmost. Then, it
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updates the amount of shifting in the common computation tree for the center part.
This update is performed by the following slide.

slide :: Int → Tree α→ Tree α
slide d (Node f l r) = Node f (slide d l) (slide d r)
slide d (Leafv f (Var x s)) = Leafv f (Var x (s+ d))
slide d x = x

The right-shift is similar to the left-shift.

Fusion Rule for zip

Fusion of skeleton zip needs unification of the lengths of lists of computation trees
for edges. Thus, the common trees for the center parts are instantiated to expand
the lists of edge computation trees. Then, each pair of corresponding trees is zipped
by introducing a new node with id function.

fuseZip :: NForm α→ NForm β → NForm (α, β)
fuseZip [[ ls1, zms1, rs1 ]] [[ ls2, zms2, rs2 ]]

= let zms = Node id zms1 zms2
ls = trim FromL ls1 ls2 zms1 zms2
rs = trim FromR (reverse rs1) (reverse rs2) zms1 zms2

in [[ ls , zms , reverse rs ]]

The function trim defined below unifies the lengths of lists by instantiating common
tree zmsk by a function insts defined below.

trim :: Direction → [Tree α]→ [Tree β] → Tree α→ Tree β → [Tree (α, β)]
trim d ts1 ts2 zms1 zms2

= let n1 = length ts1 ; n2 = length ts2
(ts ′1, ts

′
2) = (ts1 ++ insts d zms1 n1 n2, ts2 ++ insts d zms2 n2 n1)

in zipwith (Node id) ts ′1 ts ′2

The instantiation is performed by the following insts and inst .

insts :: Direction → Tree α→ Int → Int → [Tree α]
insts d zms s e = map (inst d zms) [s..(e− 1)]

inst d (Node f l r) i = Node f (inst d l i) (inst d r i)
inst d (Leafv f (Var x s)) i = let s′ = case d of FromL→ s; FromR → −s

in Leafv f (Fix x (−s′ + i) d)
inst d x i = x

Completeness of the Fusion Rules

These four fusion rules and the base case rule can transform any skeleton program
defined by Program into the normal form. We conclude this fact as a theorem.
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Theorem 5.1. Any skeleton program defined by Program can be transformed into
the normal form by using the four fusion rules and the base case rule, while keeping
the result of the whole computation. That is, the following equation holds for any
prog of Program.

evalP prog = eval (compile prog)

Proof. This is proved by induction on the structure of Program. The base case is
shown by the transformation of an input list. Induction cases are shown by the four
fusion rules.

Complete proof is shown in Appendix B.

This completeness of fusion rules is the sharp contrast of our domain-specific
fusions to general fusions, which do not determine how widely they are applicable.

Example Transformation

As a brief explanation of the rules, we transform the example next into the normal
form. For readability, we use a brief notation used in the previous examples instead
of the actual data structures defined so far. In the rest of this section, we will use⇒
to show the transformation; the left hand side is the structure being transformed,
and the right hand side is the resulting normal form.

The most simplest case is the transformation of the argument list u. List u needs

only the common computation tree u
−→
[i] that is just the element of u.

u⇒ [[ [ ], id u, [ ] ]]

Here, id u is the brief notation of Leafv id (Var u 0).
Next, we transform shift≫ bl1 u. This shift≫ introduces the constant bl1 to the

leftmost element. Thus, a new computation tree of the constant bl1 is introduced to
the normal form.

shift≫ bl1 [[ [ ], id u, [ ] ]]⇒ [[ [bl1 ], id u≫1, [ ] ]]

Also, the amount of shifting in the common tree is updated by 1.
Then, we fuse map (c−1×) to the above result.

map (c−1×) [[ [bl1 ], id u≫1, [ ] ]]⇒ [[ [c−1×bl1 ], c−1×u≫1, [ ] ]]

The constant bl1 is replaced by c−1 × bl1 , and the function (c−1×) is composed to id
held in the root of the common tree. Since id is the identity of function compositions,
id is removed in the result.

Similarly, other applications of shift≫, shift≪ and map result in the following
normal forms.

map (c0×) u⇒ [[ [ ], c0 × u, [ ] ]]
map (c1×) (shift≪ br u)⇒ [[ [ ], c1 × u≪1, [c1 × br] ]]
map (c−2×) (shift≫ bl0 (shift≫ bl1 u))⇒ [[ [c−2 × bl0 , c−2 × bl1 ], c−2 × u≫2, [ ] ]]
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In the second transformation, a new tree is introduced by shift≪ to the rightmost,
and the amount of shifting in the common tree is updated by 1 to the left. In the
last transformation, there are two computation trees for elements on the left edge,
and the amount of shifting in the common tree becomes 2. These are introduced by
two shift≫s.

Next, we perform fusion of zip to transform zip v′0 v
′
1, i.e.

zip [[ [ ], c0 × u, [ ] ]] [[ [ ], c1 × u≪1, [c1 × br] ]].

Since the lengths of lists of two normal forms to be zipped are not the same (i.e.
[ ] and [c1 × br] for the right edges), we have to unify the lengths by instantiating
the common trees. Instantiation means fixing the indices in the common trees for
elements on the edges. The result of instantiation and zip is as follows.

[[ [ ], (c0 × u, c1 × u≪1), [(c0 × u
←−
[0], c1 × br)] ]]

Here, instantiation of the common tree of the first normal form c0 × u results in

c0 × u
←−
[0], and it is zipped with the rightmost tree of the second normal form to

make the new rightmost tree.
Similarly, we obtain the following normal form from zip v′−2 v

′
−1.

[[ [(c−2 × bl0 , c−1 × bl1), (c−2 × bl1 , c−1 × u
−→
[0])], (c−2 × u≫2, c−1 × u≫1), [ ] ]]

Continuing these fusions, we finally obtain the following normal form for the
example next .

[[ [ add(add(c−2 × bl0 , c−1 × bl1), add(c0 × u
−→
[0], c1 × u

−→
[1])),

add(add(c−2 × bl1 , c−1 × u
−→
[0]), add(c0 × u

−→
[1], c1 × u

−→
[2]))],

add(add(c−2 × u≪2, c−1 × u≪1), add(c0 × u, c1 × u≫1)),

[add(add(c−2 × u
←−
[2], c−1 × u

←−
[1]), add(c0 × u

←−
[0], c1 × br))] ]]

5.2.4 Parallel Implementation of Normal Form

The third step of our strategy is to design parallel implementation of the normal
form. In this section, we explain the parallel implementation of the normal form.
The implementation of the normal form is not necessarily a skeleton composition.

Based on parallel implementation of existing skeletons [MIEH06], we consider
parallel implementation of the normal form consisting of four steps: (1) distribution
of a normal form (input lists), (2) the first local computation, (3) global commu-
nication, (4) the second local computation. We explain the idea of parallel imple-
mentation using the example next . Note that gathering and redistribution of the
result of the computation may be canceled when the result will be used as the input
of the next computation. Figure 5.4 shows an image of parallel implementation of
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ւ ց

⇓ ⇓

ւց

ցւ

(1)

(2)

(3)

(4)

dist

eval
′

eval
′

combine

(1) Input lists used in a normal form are divided into two parts to generate two local normal forms
for two processors. Then, these normal forms are distributed to processors.

(2) Each processor calculates elements that can be calculated by local data. Elements on the edges
cannot be calculated because they need data on other processors.

(3) To calculate the elements on the edges, communication is performed to complete the data.
(4) We perform calculation of the elements on the edges to complete the computation.

Figure 5.4. An image of parallel implementation of the normal form (two processors).

the normal form using two processors. We will explain the idea with two processors
here, and will formalize its generalization later.

First, we distribute the normal form among processors. The input list u is divided
into two parts: u = u1 ++ u2. There are two processors, and each processor has a
part of the divided list. Note that u may already be distributed and the distribution
phase may be skipped when u is the result of another computation of a normal
form. Letting the original normal form be [[ ls , zms , rs ]], each processor has one of
the following distributed normal forms.

nf 1 = [[ ls , zms1, [ ] ]] ; nf 2 = [[ [ ], zms2, rs ]]

Here, the list of computation trees for the left edge is held in the first normal form
nf 1, while the list of computation trees for the right edge is held in the last normal
form nf 2. The common computation tree zmsk of the normal form nf k is created
from zms by replacing the input list u with the part of the list uk. Thus, for the
example next , the distributed normal form nf k is as follows.

add(add(c−2×uk≪2, c−1×uk≪1), add(c0×uk , c1×uk≫1))

Next, in the first local step, processors calculate own partial results in parallel.
Since elements on the edges of the distributed normal forms needs elements of both
u1 and u2, these elements cannot be calculated in this phase. For example, the
rightmost element calculated by nf 1 needs an element of u2, which is underlined in
the following expression.

add(add(c−2×u1
←−
[2], c−1×u1

←−
[1]), add(c0×u1

←−
[0], c1×u2

−→
[0]))

Since these elements cannot be calculated in this local phase, computation trees for
these elements are held until the global computation phase. Here, we will put holes
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• to the places of elements that are not available in this phase.

add(add(c−2×u1
←−
[2], c−1×u1

←−
[1]), add(c0×u1

←−
[0], c1×•))

Similarly, the left edge of nf 2 generates the following computation tree with holes.

add(add(c−2×•, c−1×•), add(c0×•, c1×u2
−→
[0]))

Note that this tree complement the previous tree generated from nf 1; merging them
we have the complete tree. Generally, letting the maximum amounts of shifting
to the left and the right be l and r, the number of computation trees with holes
generated on the break of division is l + r. Trees on both sides of the break are
complementary to each other.

Third, in the global communication step, neighboring processors communicate
incomplete trees with holes to each other to complete the trees. The first local
computation can hide the time of this communication phase.

Fourth, in the second local step, each processor calculates the elements on its
edges with the completed trees to finish the computation.

In our example program next , the first normal form nf 1 generates the following
trees with holes.

add(add(c−2×u1
←−
[2], c−1×u1

←−
[1]), add(c0×u1

←−
[0], c1×•))

add(add(c−2×u1
←−
[1], c−1×u1

←−
[0]), add(c0×•, c1×•))

add(add(c−2×u1
←−
[0], c−1×•), add(c0×•, c1×•))

The second normal form nf 2 generates the following trees.

add(add(c−2×•, c−1×•), add(c0×•, c1×u2
−→
[0]))

add(add(c−2×•, c−1×•), add(c0×u2
−→
[0], c1×u2

−→
[1]))

add(add(c−2×•, c−1×u2
−→
[0]), add(c0×u2

−→
[1], c1×u2

−→
[2]))

Zipping these trees, we obtain the following complete computation trees for elements
on the break.

add(add(c−2×u1
←−
[2], c−1×u1

←−
[1]), add(c0×u1

←−
[0], c1×u2

−→
[0]))

add(add(c−2×u1
←−
[1], c−1×u1

←−
[0]), add(c0×u2

−→
[0], c1×u2

−→
[1]))

add(add(c−2×u1
←−
[0], c−1×u2

−→
[0]), add(c0×u2

−→
[1], c1×u2

−→
[2]))

After these four steps, these completed results are gathered to the root processor, or
become a new input to another normal form. Distribution of input will be skipped
in the latter case.

Summarizing the above ideas, we get the following general structure of parallel
implementation of the normal form.

parEval = globalReduction ◦map (localEval) ◦ dist
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First, a normal form is distributed among processors by dist (step (1)). Next, each
processor evaluates a part of distributed normal forms by localEval (step (2)). Then,
these results are combined globally by globalReduction (step (3) and (4)). Local
computation localEval takes a distributed normal form, and generates a triple of its
partial result (pls , cs , prs), where cs is the calculated elements on the center part,
and pls and prs are computation trees with holes for elements on left and right edges.
Global computation globalReduction communicates partial results (pls1, cs1, prs1)
and (pls2, cs2, prs2) of both sides of an edge, then generates a new partial result
(pls1, cs1 ++ glue prs1 pls2 ++ cs2, prs2). Here, glue denotes the complement process.
Then, the final result is obtained by extracting the center result of the final partial
result.

We will complete the definition of the general computation in the next section.

Formalization of Parallel Implementation of Normal Form

We formalize the parallel implementation explained in the previous section. In the
rest of this section, p means the number of processors and n means the length of
the lists involved in the computation.

First, we define the distribution dist that divides a normal form into p parts.

dist :: Int → NForm α→ [NForm α]
dist p [[ ls , zms , rs ]] = let divs = division p n

zmss = distribute zms divs
lss = ls : dupl (p− 1) [ ]
rss = dupl (p− 1) [ ] ++ [rs ]

in zip3 lss zmss rss

Here, function dupl generates a list of the given element of the given length, and
defined as follows.

dupl 0 a = [ ]
dupl n a = [a] ++ dupl (n− 1) a

Function division p n calculates the division of input lists, and distribute zms divs
distributes the input lists according to the division. This process generates dis-
tributes a computation tree zms i that is generated by replacing a list u (= u1 ++
· · ·++ ui ++ · · ·++ up) in the original tree zms with ui, and zms i is distributed to ith
processor and held in the normal form nf i (this is generated by zip3 lss zmss rss).
The list of computation trees for the left edge is held in the first normal form nf 1,
while the list of computation trees for the right edge is held in the last normal form
nf p.

Next, we will define the first local computation localEval . To this end, we define
the triple of the partial result PResult of the local computation, and define some
useful functions.

type PResult α β = ([Tree α], β, [Tree α])
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We use a special brackets 〈〈 pls , cs , prs 〉〉 to denote a partial result. Here, cs is
the computed elements on the center part, and pls and prs are computation trees
with holes for elements on left and right edges. We abstract the type of calculated
elements on the center part as β for generality.

An auxiliary function maxShift is defined as follows to calculate the maximum
amount of shifting.

maxShift :: Tree α→ (Int , Int)
maxShift (Node l r) = let (l1, r1) = maxShift l

(l2, r2) = maxShift r
in (max l1 l2,max r1 r2)

maxShift (Leafv (Var s)) = if s < 0 then (−s, 0) else (0, s)
maxShift = (0, 0)

We assume that the maximum amount of shifting is less than n/p.

A general function gEval ′ to perform the local computation is defined as follows.

gEval ′ :: (NForm α→ [Int ]→ β)→ NForm α→ PResult α β
gEval ′ fc [[ ls , zms , rs ]] = 〈〈 pls , cs , prs 〉〉
where
idces = [r..(n− l − 1)]
(l, r) = maxShift zms
cs = fc (ls , zms , rs) idces
pls = map (instP FromL zms) [(−l)..(r − 1)]
prs = map (instP FromR zms) (reverse [(−r)..(l − 1)])

This gEval ′ takes a function to calculate the center part of the partial result, and
generates a partial result consisting of the result computed by the given function
and two lists of computation trees with holes, which are generated by the following
instantiation function instP .

instP :: Direction → Tree α→ Int → Tree α
instP d (Node f l r) i = Node f (instP d l i) (instP d r i)
instP d (Leafv f (Var x s)) i = let s′ = case d of FromL→ s; FromR → −s

i′ = (−s′ + i)
in if (i′ ≤ (length x))||(i′ < 0) then Leafv f Hole

else Leafv f (Fix x i′ d)
instP d x i = x

This instP is the same of inst except that it substitutes a hole for an element that
is not available in this phase.

Now, we define the function localEval that performs local computation of the
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normal form as follows using gEval ′.

localEval :: NFormα→ PResult α [α]
localEval = gEval ′ fcMap

where fcMap [[ ls , zms , rs ]] idces
= map evalT0 ls ++map (evalT zms) idces ++map evalT0 rs

The defined function fcMap evaluates the computation tree zms against indices given
by gEval ′, and returns a list of the resulting elements.

Next, we will define globalReduction: the final global communication and com-
pletion of partial computation trees. To this end, we define the process of completion
of a computation tree from two trees complementary to each other.

combine :: Tree α→ Tree α→ Tree α
combine (Node f1 l1 r1) (Node f2 l2 r2) = Node f1 (combine l1 l2) (combine r1 r2)
combine (Leafv f1 Hole) (Leafv f2 v) = Leafv f2 v
combine (Leafv f1 v) (Leafv f2 Hole)) = Leafv f1 v
combine (Leafc c) (Leafc c

′) = Leafc c

This function completes the tree by filling holes with values held in the other tree.
Using this auxiliary function, we define an operator ⊞(·,·) for global reduction.

(⊞(·,·)) :: (α→ α→ α)→ (β → α)→ PResult β α→ PResult β α→ PResult β α
〈〈 pls1, cs1, prs1 〉〉⊞(⊕,f) 〈〈 pls2, cs2, prs2 〉〉 = 〈〈 pls1, cs , prs2 〉〉

where es = zipwith ((evalT0◦) ◦ combine) prs1 pls2
cs = cs1 ⊕ cata (⊕) f es ⊕ cs2

Here, es is the list of elements computed from the completed trees by evaluating the
trees with evalT0 . The defined operator takes an associative operator and a function
to compute the reduction of the elements on breaks computed from the completed
trees. This reduction is done by the following general function.

cata :: (α→ α→ α)→ (β → α)→ [β]→ α
cata (⊕) f [ ] = ı⊕
cata (⊕) f (a : x) = f a⊕ cata (⊕) f x

Especially, cata (++) [·] = id , and the operator ⊞(++,[·]) simply returns the resulting
list.

Using the functions defined above, we define the global computation globalReduction.

globalReduction :: [PResult α [α]]→ [α]
globalReduction = extract ◦ reduce (⊞(++,[·]))

The last function extract extracts the center value from the final partial result.

extract :: PResult α β → β
extract 〈〈 pls , cs , prs 〉〉 = cs
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Now, we have the following completed definition of parEval .

parEval :: Int → NForm α→ [α]
parEval p = globalReduction ◦map localEval ◦ dist p

5.2.5 Expansion of Target Programs

Based on the results on Program, we expand our target programs to ProgramS , which
includes accumulation by scan′ or scanr′, and ProgramR, which includes reduction
by reduce (see Section 5.2.1).

Target Programs with Accumulation

First, we expand our target programs to ProgramS . A target skeleton program of
ProgramS has one accumulation by scan′ or scanr′ after the computation of Program
that involves neighbor elements using combination of shift≪, shift≫, zip and map. The
target skeleton program also has arbitrary number of map after the accumulation.

As an example of the target programs, consider a program to solve a tridiagonal
linear system of equations. The output of the program is xs = [x1, . . . , xn] that
satisfies the following linear equations for the given coefficients ds = [d1, . . . , dn],
es = [e1, . . . , en], fs = [f1, . . . , fn], bs = [b1, . . . , bn].
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A x = b

A skeleton program that solves this tridiagonal linear system of equations is given
in Figure 5.5. This program is based on the LU decomposition of the coefficient
matrix A = LU [Sto73]. Here, us corresponds to the upper triangular matrix U ,
ms corresponds to the lower triangular matrix L, ys is the solution of the linear
equation Lys = bs , and xs the solution of the linear equation Axs = bs . The
operators ⊗1, ⊗2 and ⊗3 are multiplication of 2× 2 matrices, although ⊗2 and ⊗3

omit the half of the elements. This program consists of three parts: the first part
performs the LU decomposition with scan′ to obtain us and ms , the second part
performs the forward substitution by scan′ to obtain ys , and the third part performs
the backward substitution by scanr′ to obtain xs .

Now, we will extend the normal form of Program to hold the following three:
the direction, the operator, the initial value of the accumulation, and the composed
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solveTS ds es fs bs
= let us = map g2 (scan′ (⊗1) eye (map g1 (zip ds (map mul (zip es (shift≫ 0 fs))))))

ms = map div (zip es (shift≫ ∞ us))
ys = map g5 (scan′ (⊗2) eye

′ (map g3 (zip ms bs)))
xs = map g5 (scanr′ (⊗3) eye

′ (map g4 (zip us (zip ys fs))))
in xs
where (a11, a12, a21, a22)⊗1 (b11, b12, b21, b22)

= (a11 ∗ b11 + a12 ∗ b21, a11 ∗ b12 + a12 ∗ b22,
a21 ∗ b11 + a22 ∗ b21, a21 ∗ b12 + a22 ∗ b22)

(a11, a21)⊗2 (b11, b21) = (a11 ∗ b11, a21 ∗ b11 + b21)
(a11, a12)⊗3 (b11, b12) = (a11 ∗ b11, a11 ∗ b12 + a12)
g1 (d, ef ) = (d, 1,−ef , 0)
g2 (a11, a12, a21, a22) = a11/a12
g3 (m, b) = (−m, b)
g4 (u, (y, f)) = (−f/u, y/u)
g5 (a11, a12) = a12
mul a b = a ∗ b
div a b = a/b
eye = (1, 0, 0, 1)
eye ′ = (1, 0)

Figure 5.5. A skeleton program that solves the tridiagonal linear system of equations.

function applied by the last maps. The extended normal form NFormS is defined
as follows.

type NFormS α = (NForm β, (Direction, β → β → β, β, β → α))

In the extended normal form ([[ ls , zms , rs ]], (d,⊕, e, f)), [[ ls , zms , rs ]] specifies the
computation before the accumulation, d is the direction of accumulation, ⊕ is the
associative binary operator used in the accumulation, e is the initial element of the
accumulation, and f is a function applied to each element after the accumulation.
The direction d is FromL for the accumulation by scan′, and FromR for scanr′.

For example, the example solveTS is described by the following three normal
forms.

us ⇒ ([[ [g1 (ds ,mul (es , 0))], g1 (ds ,mul (es , fs≫1)), [ ] ]], (FromL,⊗1, eye, g2))
ys ⇒ ([[ [g3 (div (es ,∞), bs )], g3 (div (es , us≫1), bs ), [ ] ]], (FromL,⊗2, eye

′, g5))
xs ⇒ ([[ [ ], g4 (us , (ys , fs )), [ ] ]], (FromR,⊗3, eye

′, g5))

Note that the computation of ms is absorbed by the computation of ys .

Next, we will extend the fusion rules to handle scan′, scanr′ and map after accu-
mulation. The transformation of a skeleton program into an extended normal form
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is performed by the following function compileS with fusion rules one by one.

compileS :: ProgramS α→ NFormS α
compileS (scan (⊕) e x) = fuseScan (⊕) e (compile x)
compileS (scanr (⊕) e x) = fuseScanr (⊕) e (compile x)
compileS (map f x) = fuseMapS f (compileS x)

Transformation of the computation before the accumulation is done by compile
defined in Section 5.2.3.

Fusion rules for accumulations are as follows.

fuseScanr :: (α→ α→ α)→ α→ NForm α→ NFormS α
fuseScanr (⊕) e [[ ls , zms , rs ]] = ([[ ls , zms , rs ]], (FromR, (⊕), e, id))

fuseScan :: (α→ α→ α)→ α→ NForm α→ NFormS α
fuseScan (⊕) e [[ ls , zms , rs ]] = ([[ ls , zms , rs ]], (FromL, (⊕), e, id))

Each rule appends the operator ⊕ and the initial element e to the normal form, and
marks the direction of the accumulation by FromL or FromR. The last element of
the extended normal form is initialized by the identity function id .

The fusion rule for map after accumulation is as follows.

fuseMapS :: (β → α)→ NFormS β → NFormS α
fuseMapS f = (nf , (d, (⊕), e, g)) = (nf , (d, (⊕), e, f ◦ g))

This rule merely composes the given function f to the function g in the extended
normal form.

It is obvious that any target program can be transformed into an extended normal
form by the above fusion rules and the fusion rules defined in Section 5.2.3.

Finally, we will extend the parallel implementation of the normal form. Based
on parallel implementation of skeleton scan′, we design parallel implementation of
the normal form. Parallel implementation of skeleton scan′ is given as follows.

scan′ (⊕) e = reduce (++) ◦ zipwithP (afterScan (⊕))
◦ ((prescan (⊕) e ◦map last)△id)
◦map (scan′ (⊕) ı⊕) ◦ dist p
where afterScan (⊕) a x = map (a⊕) x

Here, zipwithP f (x, y) = zipwith f x y, and (f△g) x = (f x, g x). First, this imple-
mentation performs local accumulation in parallel by scan′. Then, it performs global
accumulation by prescan defined below. Finally, afterScan adds the accumulated
value calculated by prescan to each element of the result of the local accumulation.

prescan :: (α→ α→ α)→ α→ [α]→ [α]
prescan (⊕) e [ ] = [ ]
prescan (⊕) e (a : x) = e : prescan (⊕) (e⊕ a) x
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Based on the parallel implementation of scan′, we consider the following parallel
implementation of a normal form with accumulation. We only show the implemen-
tation of the normal form with accumulation by scan′. The implementation for
accumulation by scanr′ is similar to that by scan′.

parEvalScan :: Int→NFormS α→[α]
parEvalScan p (nf , (FromL,⊕, e, f))

= (reduce (++) ◦ zipwithP (evalAfterScan (⊕) f)
◦ ((prescan (⊞(⊕,id)) ([ ], e, [ ]) ◦map takeLast)△id)
◦map (evalScan ′ (⊕) ı⊕) ◦ dist p) nf

Here, takeLast 〈〈 pls , cs , prs 〉〉 = 〈〈 pls , last cs , prs 〉〉. Basic structure is the same as
the implementation of scan′. Main difference is that local and global computations
deal with triples of partial results defined in the previous section. The local compu-
tation evalScan ′ that generates a partial result is defined as follows. The generated
partial result holds the result of local accumulation in the center of the triple.

evalScan ′ :: (α→ α→ α)→ α→ NForm α→ PResult α [α]
evalScan ′ (⊕) e = gEval ′ fcScan
where fcScan [[ ls , zms , rs ]] idces = sls ++ scs ++ srs

where sls = scata (⊕) e evalT0 ls
e′ = last (e : sls)
scs = scata (⊕) e′ (evalT zms) idces
e′′ = last (e′ : scs)
srs = scata (⊕) e′′ evalT0 rs

Here, scata defined below performs accumulation and evaluation of the computation
tree at the same time.

scata :: (α→ α→ α)→ α→ (β → α)→ [β]→ [α]
scata (⊕) e f [ ] = [ ]
scata (⊕) e f (a : x) = let e′ = (e⊕ f a)

in e′ : scata (⊕) e′ f x

The final local computation evalAfterScan (⊕) calculates accumulation of elements
on the edges and adds the accumulated value to the result of the local computation.

evalAfterScan :: (α→ α→ α)→ (α→ β)→ PResult α α→ PResult α [α]→ [β]
evalAfterScan (⊕) f 〈〈 epls , e, eprs 〉〉 〈〈 pls , cs , prs 〉〉 = res

where fe (epr , pl) = evalT0 (combine epr pl))
sls = scata (⊕) e fe (zip eprs pls)
e′ = last (e : sls)
scs = map (f ◦ e′⊕) cs
res = map f sls ++ scs
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Target Programs with Reduction

Next, we expand our target programs to ProgramR.
We will extend the normal form of Program to hold the operator of the reduction.

The extended normal form NFormR is defined as follows.

type NFormR α = (NForm β, β → β → β)

In the extended normal form ([[ ls , zms , rs ]],⊕), [[ ls , zms , rs ]] specifies the computa-
tion before the accumulation, and ⊕ is the associative binary operator used in the
reduction.

Next, we will extend the fusion rules to handle reduce. The transformation of
a skeleton program into an extended normal form is performed by the following
function compileR and fusion rules one by one.

compileS :: ProgramS α→ NFormS α
compileR (reduce (⊕) x) = fuseReduce (⊕) (compile x)

Transformation of the computation before the reduction is done by compile defined
in Section 5.2.3.

The fusion rule for reduction is as follows.

fuseReduce :: (α→ α→ α)→ NForm α→ NFormR α
fuseReduce (⊕) [[ ls , zms , rs ]] = ([[ ls , zms , rs ]], (⊕))

The rule appends the operator ⊕ to the normal form.
It is obvious that any target program can be transformed into an extended normal

form by the above fusion rule and the fusion rules defined in Section 5.2.3.
Now, we will give parallel implementation for ProgramR that perform reduction

by reduce to the result of a normal form. These programs can be executed in parallel
by performing reduction, instead of generation of a list, in the implementation of a
normal form. That is, parallel implementation is obtained by giving the reduction
operator to gEval ′ and ⊞(·,·).

The function evalReduce ′ that performs local reduction is defined as follows.

evalReduce ′ :: (α→ α→ α)→ NForm α→ PResult α α
evalReduce ′ (⊕) = gEval ′ fcReduce

where fcReduce [[ ls , zms , rs ]] idces
= cata (⊕) evalT0 ls ⊕ cata (⊕) (evalT zms) idces ⊕ cata (⊕) evalT0 rs

This function performs reduction and evaluation of computation trees at the same
time by cata (⊕) evalT0 and cata (⊕) (evalT zms). Using this function, parallel
implementation of a normal form with reduction is defined as follows.

parEvalReduce :: Int → NFormR α→ α
parEvalReduce p (nf ,⊕)

= (extract ◦ reduce (⊞(⊕,id)) ◦map (evalReduce ′ (⊕)) ◦ dist p) nf
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5.3 Nested Reductions: Involving an Infinite Num-

ber of Neighbor Elements

In this section, we will focus on computations of nested reductions: nested data
structures are generated from flat structures, and they are consumed by two-level
nested reductions. This is a generalized version of computation discussed in the
previous section, in the sense that the computation involving a finite number of
neighbor elements can be specified as nested reductions.

First, we will introduce the general form of nested reductions. Then, we will in-
troduce some useful functions to generate nested structures, and show some example
concrete problems. Finally, we will develop shortcuts of fusion optimizations, i.e.,
theorems to dispatch efficient implementations to general forms that satisfy some
specific conditions.

5.3.1 Generate-and-test Specifications: General Forms of
Nested Reductions

We will introduce general forms “generate-and-test specifications” of nested reduc-
tions on lists and two-dimensional arrays.

First, we will introduce the general form for nested reductions on lists.

Definition 5.2 (Generate-and-test specification for lists). The general form for
nested reductions on lists is given as follows.

([f,⊕]) ◦map ([g,⊗]) ◦ filter p ◦gg

Here, gg is a function to generate nested lists. The generated lists are filtered with
predicate p. Then, the filtered lists are consumed by the nested reductions: ([f,⊕])
for the outer list and ([g,⊗]) for the inner lists.

Note that homomorphism ([f,⊕]) is equivalent to the composition reduce (⊕) ◦map f .
Especially, simple nested reductions with two binary operators ⊕ and ⊗ for the gen-
eration by gg can be described in the generate-and-test specification as follows.

reduce (⊕) ◦map (reduce (⊗)) ◦gg = ([id ,⊕]) ◦map ([id ,⊗]) ◦ filter true ◦gg

Here, true is the predicate returning always True. The equality of the left hand
side (the simple nested reductions) and the right hand side (the generate-and-
test specification) is easily shown. First, by the definition of reduce (⊕), we have
([id ,⊕]) = reduce (⊕) and ([id ,⊗]) = reduce (⊗). Next, by the definition of filter p,
filter true = id since true returns always True.

It is worth noting that the identity function id can be described with homomor-
phism, i.e., id = ([[·],++]), and the outer reduction may be omitted when it is the
identity function.

Next, we will introduce the general form for two-dimensional arrays.
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Definition 5.3 (Generate-and-test specification for two-dimensional arrays). The
general form for nested reductions on two-dimensional arrays is given as follows.

([f,⊕,⊗]) ◦map ([g,⊖,⊙]) ◦ gg

Here, gg is a function to generate nested arrays. The generated arrays are consumed
by the nested reductions: ([f,⊕,⊗]) for the outer structure, and ([g,⊖,⊙]) for the
inner structures.

Note that homomorphism ([f,⊕,⊗]) is equivalent to the composition of skeletons:
reduce (⊕,⊗) ◦map f . We do not deal with filtering for two-dimensional arrays.

Here is an extension of the specifications. We will use a product of k homomor-
phisms, i.e., ([g1,⊖1])× · · · × ([gk,⊖k]) and ([g1,⊖1,⊙1])× · · · × ([gk,⊖k,⊙k]) instead
of the simple homomorphism ([g,⊖]) and ([g,⊖,⊙]), when generation functions gen-
erate nested structures in which generated inner structures are tupled.

5.3.2 Functions to Generate Nested Data Structures

This section gives a collection of useful functions to generate nested structures from
the given flat structure, which will be used as the first function gg of the general
form. For each function, we will give the formal definition and example applications
written with the function.

Now, we will introduce some predicates used in the examples applications.

Predicate ascending returns True if the given list is ascending (i.e., each element is
smaller than the following element). For example, applying ascending to a sorted list
[−2, 4, 5] we get ascending [−2, 4, 5] = True. Conversely, ascending [3, 6, 2] = False

since 6 is not smaller than 2.

Predicate descending returns True if the given list is descending (i.e., each ele-
ment is bigger than the following element). For example, applying descending to
a descendingly sorted list [5, 3, 0] we get descending [5, 3, 0] = True. Conversely,
ascending [1, 9, 7] = False since 1 is not bigger than 9.

Predicate smoothc returns True if a difference between any successive elements
in the given list is less than or equal to c. For example, smooth2 [6, 5, 7] = True,
since both of the differences 1 = |6 − 5| and 2 = |5 − 7| are less than or equal to
2. Conversely, smooth2 [6, 5, 8] = False because the difference |5 − 8| = 3 is greater
than 2.

Predicate high returns True if the maximum element of the given list is greater
than the length of the list. For example, high [1, 4, 3] = True, since the maximum
element 4 is greater than the length of the list, i.e., 3. Conversely, high [1, 4, 3, 2] =
False because the maximum element 4 is not greater than the length of the list 4.

Formal definitions of the above predicates will be shown later.
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Function inits to Generate Prefix Segments

Function inits generates all prefixes of an input list in the lexicographic order. For
example, applying inits to [1, 3, 1,−7, 2, 4], we get the following nested list.

inits [1, 3, 1,−7, 2, 4] = [[1], [1, 3], [1, 3, 1], [1, 3, 1,−7], [1, 3, 1,−7, 2], [1, 3, 1,−7, 2, 4]]

Here, each element of the resulting list is a prefix of the given list.

The formal definition of inits is given as follows.

Definition 5.4 (Inits). Function inits is defined with homomorphism as follows.

inits = ([[·] ◦ [·],⊕]) where x⊕ y = x++map ((last x)++) y

The operator ⊕ in the above definition makes a list of initial segments of a list
u++ v from lists (x and y in the above equation) of initial segments of u and v. Since
each initial segment of u is also an initial segment of u++ v, x remains in the result.
Since each initial segment of v need to be concatenated with u to become an initial
segment of u++ v, the operator maps ((last x)++) (u is the last element of x) to y.

The most famous application of inits is prefix sums, which has many applica-
tions [Ble90]. .

Example 5.5 (Prefix sums). The statement is as follows: Given a list and an
associative binary operator, find sums for all prefixes of the given list.

For example, prefix sums of [1, 3, 1,−7, 2, 4] with operator ⊕ is [1, 1⊕ 3, 1⊕ 3⊕
1, 1 ⊕ 3 ⊕ 1 ⊕ −7, 1 ⊕ 3 ⊕ 1 ⊕ −7 ⊕ 2, 1 ⊕ 3 ⊕ 1 ⊕ −7 ⊕ 2 ⊕ 4]. Using inits, prefix
sums are easily obtained by applying reduction with ⊕ to all prefixes generated by
inits.

map (reduce (⊕)) (inits [1, 3, 1,−7, 2, 4])
= map (reduce (⊕)) [[1], [1, 3], [1, 3, 1], [1, 3, 1,−7], [1, 3, 1,−7, 2], [1, 3, 1,−7, 2, 4]]
= [1, 1⊕ 3, 1⊕ 3⊕ 1, 1⊕ 3⊕ 1⊕−7, 1⊕ 3⊕ 1⊕−7⊕ 2, 1⊕ 3⊕ 1⊕−7⊕ 2⊕ 4]

Note that the outer reduction may be the identity function id = ([[·],++]).

The maximum prefix (initial-segment) sum problem is one of optimization prob-
lems on sequences.

Example 5.6 (Maximum prefix sum). Its statement is as follows: Given a list, find
the maximum sum of a prefix of the given list.

For example, the maximum prefix sum of [1, 3, 1,−7, 2, 4] is 5 since its prefix sums
(with the usual plus operator +) are [1, 4, 5,−2, 0, 4]. So, using inits we can get the
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maximum prefix sum easily by applying reduction with the maximum operator ↑
for the prefix sums.

reduce (↑) (map (reduce (+)) (inits [1, 3, 1,−7, 2, 4]))
= reduce (↑) (map (reduce (+)) [[1], [1, 3], [1, 3, 1], [1, 3, 1,−7], [1, 3, 1,−7, 2],

[1, 3, 1,−7, 2, 4]])
= reduce (↑) ([1, 1 + 3, 1 + 3 + 1, 1 + 3 + 1 +−7, 1 + 3 + 1 +−7 + 2,

1 + 3 + 1 +−7 + 2 + 4])
= 5

Here is a variant of the maximum prefix sum problem.

Example 5.7 (Maximum p-prefix sum). Its statement is as follows: Given a list
and a predicate p, find the maximum sum of its prefix satisfying the given predicate
p.

For example, the maximum ascending-prefix sum of [1, 3, 1,−7, 2, 4] is 4 since its
ascending prefixes are [1] and [1, 3]. Using inits and filter , we can get the maximum
ascending-prefix sum easily as follows.

reduce (↑) (map (reduce (+)) (filter ascending (inits [1, 3, 1,−7, 2, 4])))
= reduce (↑) (map (reduce (+)) (filter ascending [[1], [1, 3], [1, 3, 1], [1, 3, 1,−7],

[1, 3, 1,−7, 2], [1, 3, 1,−7, 2, 4]]))
= reduce (↑) (map (reduce (+)) [[1], [1, 3]])
= reduce (↑) [1, 1 + 3]
= 4

All three examples above are instances of the general form. Here is the summary
of the example programs.

prefix sums : ([[·],++]) ◦map (reduce (⊕)) ◦inits
maximum prefix sum : reduce (↑) ◦map (reduce (+)) ◦inits
maximum p-prefix sum : reduce (↑) ◦map (reduce (+)) ◦ filter p ◦inits

Function tails to Generate Suffix Segments

Function tails generates all suffixes of an input list in the lexicographic order1. For
example, applying tails to [1, 3, 1,−7, 2, 4], we get the following nested list.

tails [1, 3, 1,−7, 2, 4] = [[1, 3, 1,−7, 2, 4], [3, 1,−7, 2, 4], [1,−7, 2, 4], [−7, 2, 4], [2, 4], [4]]

Here, each element of the resulting list is a suffix of the given list.
The formal definition of tails is given as follows.

1Note that the lexicographic order is that with respect to positions of elements in the input. The
following example make this clear: tails [a1, a2, a3] = [[a1, a2, a3], [a2, a3], [a3]]. Here, concatenations
of the indices of the suffixes are 123, 23, and 3, which is arranged in the lexicographic order.
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Definition 5.8 (Tails). Function tails is defined with homomorphism as follows.

tails = ([[·] ◦ [·],⊕]) where x⊕ y = map (++(head y))x++ y

The operator ⊕ in the above definition makes a list of tail segments of a list
u++ v from lists (x and y in the above equation) of tail segments of u and v. Since
each tail segment of v is also a tail segment of u++ v, y remains in the result. Since
each tail segment of u need to be concatenated with v to become a tail segment of
u++ v, the operator maps (++(head y)) (v is the head element of y) to x.

The most famous application of tails is suffix sums, which is converse computation
of prefix sums shown in the previous section.

Example 5.9 (Suffix sums). The statement is as follows: Given a list and an
associative binary operator, find sums for all suffixes of the given list.

For example, suffix sums of [1, 3, 1,−7, 2, 4] with operator ⊕ is [1⊕ 3⊕ 1⊕−7⊕
2⊕ 4, 3⊕ 1⊕−7⊕ 2⊕ 4, 1⊕−7⊕ 2⊕ 4,−7⊕ 2⊕ 4, 2⊕ 4, 4] . Using tails, we can
get suffix sums easily by applying reduction with ⊕ to all suffixes generated by tails.

map (reduce (⊕)) (tails [1, 3, 1,−7, 2, 4])
= map (reduce (⊕)) [[1, 3, 1,−7, 2, 4], [3, 1,−7, 2, 4], [1,−7, 2, 4], [−7, 2, 4], [2, 4], [4]]
= [1⊕ 3⊕ 1⊕−7⊕ 2⊕ 4, 3⊕ 1⊕−7⊕ 2⊕ 4, 1⊕−7⊕ 2⊕ 4,−7⊕ 2⊕ 4, 2⊕ 4, 4]

The maximum suffix sum problem is one of optimization problems on sequences.

Example 5.10 (Maximum suffix sum). Its statement is as follows: Given a list,
find the maximum sum of a suffix of the given list.

For example, the maximum suffix sum of [1, 3, 1,−7, 2, 4] is 6 since its suffix sums
(with the usual plus operator +) are [4, 3, 0,−1, 6, 4]. So, using tails we can get the
maximum suffix sum easily by applying reduction with the maximum operator ↑ for
suffix sums.

reduce (↑) (map (reduce (+)) (tails [1, 3, 1,−7, 2, 4]))
= reduce (↑) (map (reduce (+)) [[1, 3, 1,−7, 2, 4], [3, 1,−7, 2, 4], [1,−7, 2, 4],

[−7, 2, 4], [2, 4], [4]]
= reduce (↑) [1 + 3 + 1 +−7 + 2 + 4, 3 + 1 +−7 + 2 + 4, 1 +−7 + 2 + 4,

−7 + 2 + 4, 2 + 4, 4]
= 6

Here is a variant of the maximum suffix sum problem.

Example 5.11 (Maximum p-suffix sum). Its statement is as follows: Given a list
and a predicate p, find the maximum sum of its suffix satisfying the given predicate
p.
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For example, the maximum ascending-suffix sum of [1, 3, 1,−7, 2, 4] is 6 since its
ascending suffixes are [−7, 2, 4], [2, 4] and [4]. Using tails and filter , we can get the
maximum ascending-suffix sum easily as follows.

reduce (↑) (map (reduce (+)) (filter ascending (tails [1, 3, 1,−7, 2, 4])))
= reduce (↑) (map (reduce (+)) (filter ascending [[1, 3, 1,−7, 2, 4], [3, 1,−7, 2, 4],

[1,−7, 2, 4], [−7, 2, 4], [2, 4], [4]]))
= reduce (↑) (map (reduce (+)) [[−7, 2, 4][2, 4], [4]])
= reduce (↑) [−7 + 2 + 4, 2 + 4, 4]
= 6

Function segs to Generate All Segments

Function segs generates segments (continuous subsequences) of an input list in the
lexicographic order. For example, applying segs to [3, 2,−7, 4, 2] we get the following
nested list.

segs [3, 2,−7, 4, 2] = [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2], [2], [2,−7],
[2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4], [−7, 4, 2], [4], [4, 2], [2]]

The formal definition of segs is given as follows.

Definition 5.12 (Segs). Function segs is defined with homomorphism as follows.

segs = reduce (++) ◦map inits ◦ tails

This definition is based on the fact that a segment of a list is a prefix of a suffix
of the list.

The most famous application of segs is maximum segment sum problem [Bir87,
Jeu93,SHTO00], which is one of optimization problems on sequences.

Example 5.13 (Maximum segment sum). The statement is as follows: Given a list,
find the maximum sum of a segment of the given list.

For example, the maximum segment sum of [3, 2,−7, 4, 2] is 6 that is the sum of
its segment [4, 2]. We can get the maximum segment sum of the given list using segs

as follows. First, we generate all segments of the given list by segs. Then, we apply
reduction with the usual plus operator + to generated segments to get all segment
sums. Finally, applying reduction with maximum-operator to those segment sums,
we get the maximum segment sum of the given list.

reduce (↑) (map (reduce (+)) (segs [3, 2,−7, 4, 2]))
= reduce (↑) (map (reduce (+)) [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2],

[2], [2,−7], [2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4],
[−7, 4, 2], [4], [4, 2], [2]])

= reduce (↑) [3, 5,−2, 2, 4, 2,−5,−1, 1,−7,−3,−1, 4, 6, 2]
= 6
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Here is a variant of the maximum segment sum problem.

Example 5.14 (Maximum p-segment sum). Its statement is as follows: Given a
list and a predicate p, find the maximum sum of its segment satisfying the given
predicate p.

For example, the maximum ascending-segment sum of [3, 2,−7, 4, 2] is 4 since
its ascending-segments are all singletons and [−7, 4]. The maximum descending-
segment sum of [3, 2,−7, 4, 2] is 6 since its descending-segments are [3, 2], [3, 2,−7],
[2,−7], [4, 2] and all singletons. Using segs and filter , we can get the maximum
descending-segment sum easily as follows.

reduce (↑) (map (reduce (+)) (filter descending (segs [3, 2,−7, 4, 2])))
= reduce (↑) (map (reduce (+)) (

filter descending [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2],
[2], [2,−7], [2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4],

[−7, 4, 2], [4], [4, 2], [2]]))
= reduce (↑) (map (reduce (+)) [[3], [3, 2], [3, 2,−7], [2], [2,−7], [−7], [4], [4, 2], [2]])
= reduce (↑) [3, 5,−2, 2,−5,−7, 4, 6, 2]
= 6

Longest-p segment problem [Zan92] is also one of optimization problems on se-
quences.

Example 5.15 (Longest-p segment). Its statement is as follows: Given a list and a
predicate, find the longest segment (continuous subsequence) of the list that satisfies
the predicate.

For example, the longest-ascending segment of [3, 2,−7, 4, 2] is [−7, 4], while
the longest-descending segment is [3, 2,−7]. There are many instances of longest-p
segment for various predicates. The longest segment satisfying a given predicate p
is obtained by using segs and filtering. Some instances are shown below.

The longest smooth segment of an input list is obtained by using the predicate
smoothc.

reduce (↑length) (filter smooth4 (segs [3, 2,−7, 4, 2]))
= reduce (↑length) (filter smooth4 (segs [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2],

[2], [2,−7], [2,−7, 4], [2,−7, 4, 2], [−7], [−7, 4],
[−7, 4, 2], [4], [4, 2], [2]]))

= reduce (↑length) [[3], [3, 2], [2], [−7], [4], [4, 2], [2]]
= [3, 2]
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The longest high segment of an input list is obtained by using predicate high.

reduce (↑length) (filter high (segs [3, 2,−7, 4, 2]))
= reduce (↑length) (filter high (

segs [[3], [3, 2], [3, 2,−7], [3, 2,−7, 4], [3, 2,−7, 4, 2],
[2], [2,−7], [2,−7, 4], [2,−7, 4, 2],

[−7], [−7, 4], [−7, 4, 2], [4], [4, 2], [2]]))
= reduce (↑length) [[3], [3, 2], [2], [4], [4, 2], [2]]
= [3, 2]

Function neighbors to Generate Neighbor Segments

Function neighbors generates left and right neighbor segments for each element of an
input list. For example, applying neighbors to [1, 3, 1,−7, 2, 4], we get the following
list of tuples, in which each tuple consists of the left neighbor segment, the center
element, and the right neighbor segment.

neighbors [1, 3, 1,−7, 2, 4] = [([ ], 1, [3, 1,−7, 2, 4]), ([1], 3, [1,−7, 2, 4]),
([1, 3], 1, [−7, 2, 4]), ([1, 3, 1],−7, [2, 4]),

([1, 3, 1,−7], 2, [4]), ([1, 3, 1,−7, 2], 4, [ ])]

The formal definition of neighbors is given as follows.

Definition 5.16 (Neighbors). Function neighbors is defined using inits and tails as
follows.

neighbors = zipP3 ◦ ((map init ◦ inits)△id△(map tail ◦ tails))
where zipP3 (x, y, z) = zip x y z

Basically, neighbors is a composition of inits and tails. It uses extra init and tail

to remove redundant occurrence of the center element.

Here is a variant of neighbors to generate neighbor segments of fixed sizes. This
variant is useful for describing examples shown in the previous section (Section 5.2).
For example, applying the variant neighbors ′ to [1, 3, 1,−7, 2, 4] with boundaries
[5, 6] and [9], we get the following list of tuples. Here, each left neighbor segment
has two elements, and each right neighbor segment has only one element, which are
the same as the given boundaries.

neighbors ′ [5, 6] [9] [1, 3, 1,−7, 2, 4] = [([5, 6], 1, [3]), ([6, 1], 3, [1]), ([1, 3], 1, [−7]),
([3, 1],−7, [2]), ([1,−7], 2, [4]), ([−7, 2], 4, [8])]

The formal definition of neighbors ′ is given as follows.
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Definition 5.17 (Finite-window neighbors). Function neighbors ′ takes two lists for
boundary elements: ls for the left edge, and rs for the right edge.

neighbors ′ ls rs = map (taker m ◦ (ls++)× id × take n ◦ (++rs)) ◦ neighbors
where m = length ls

n = length rs

Example 5.18 (Running example in Section 5.2). The running example in Sec-
tion 5.2 is described with neighbors as follows.

next = map f ◦ neighbors ′ [bl0 , bl1 ] [br]
where f ([u−2, u−1], u0, [u1]) = c−2 × u−2 + c−1 × u−1 + c0 × u0 + c1 × u1

Function subs to Generate All Subsequences

Function subs generates all subsequences (sub-lists) of an input list. Generated
subsequences are listed in the lexicographic order. Its definition is as follows.

subs [a] = [[a]]
subs (a : x) = let sx = subs x in [a] ++map ([a]++) sx ++ sx

For example, applying subs to [2, 5,−3, 4] we get the following nested list.

subs [2, 3,−3, 4] = [[2], [2, 3], [2, 3,−3], [2, 3,−3, 4], [2, 3, 4], [2,−3], [2,−3, 4], [2, 4],
[3], [3,−3], [3,−3, 4], [3, 4], [−3], [−3, 4], [4]]

Longest-p subsequence problem is one of optimization problems on sequences [Jeu93].

Example 5.19 (Longest-p subsequence). Its statement is as follows: Given a list
and a predicate, find the longest subsequence of the list that satisfies the predicate.

For example, the longest-ascending subsequence of [2, 3,−3, 4] is [2, 3, 4], while
the longest-descending subsequence is [2,−3]. There are many instances of longest-
p subsequence for various predicates. The longest subsequence satisfying a given
predicate p is obtained by using subs and filter . Some instances are shown blow.

The longest ascending subsequence of an input list is obtained by using subs and
the predicate ascending .

reduce (↑length) (filter ascending (subs [2, 3,−3, 4]))
reduce (↑length) (filter ascending

[[2], [2, 3], [2, 3,−3], [2, 3,−3, 4], [2, 3, 4], [2,−3], [2,−3, 4], [2, 4],
[3], [3,−3], [3,−3, 4], [3, 4], [−3], [−3, 4], [4]])

= reduce (↑length) [[2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [−3], [−3, 4], [4]]
= [2, 3, 4]
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The longest descending subsequence of an input list is obtained by using subs and
the predicate descending .

reduce (↑length) (filter descending (subs [2, 3,−3, 4]))
reduce (↑length) (filter descending

[[2], [2, 3], [2, 3,−3], [2, 3,−3, 4], [2, 3, 4], [2,−3], [2,−3, 4],
[2, 4], [3], [3,−3], [3,−3, 4], [3, 4], [−3], [−3, 4], [4]])

= reduce (↑length) [[2], [2,−3], [3], [3,−3], [−3], [4]]
= [2,−3]

Here is another example problem.

Example 5.20 (0-1 knapsack problem). Given a list of items (pairs of value and
weight) and a knapsack of fixed capacity, find a subset of items that has the maxi-
mum sum of values and its sum of weight is less than or equals to the capacity.

For example, given four items [(2, 1), (5, 3), (1, 1), (4, 2)] (first element of a pair is
value and the second is weight) and a knapsack of capacity 4, the solution (a set of
items to be put into the knapsack) is [(2, 1), (5, 3)]. This solution is given as follows.
First, we generate every combination of items by subs. Then, using filtering, we
throw away combinations of which weight is greater than the capacity. Finally, we
take the combination that have the maximum sum of values.

reduce (↑reduce (+) ◦mapπ1
) (

filter ((≤4)◦(reduce (+))◦(map π2)) (subs [(2, 1), (5, 3), (1, 1), (4, 2)]))
= reduce (↑reduce (+) ◦mapπ1

) [[(2, 1)], [(2, 1), (5, 3)], [(2, 1), (1, 1)], [(2, 1), (1, 1), (4, 2)],
[(2, 1), (4, 2)], [(5, 3)], [(5, 3), (1, 1)], [(1, 1)], [(1, 1), (4, 2)], [(4, 2)]]

= [(2, 1), (5, 3)]

Functions Ts, Ls, Bs, Rs, and Their Combinations to Generate Rectangles

We will introduce eight functions to generate various rectangles. Basically, these
functions are extensions of the functions inits and tails on lists.

Ts = scan (−◦,≫) ◦map | · |
Ls = scan (≫, − ◦) ◦map | · |
Bs = scanr (−◦,≪) ◦map | · |
Rs = scanr (≪, − ◦) ◦map | · |
TLs = scan (−◦, − ◦) ◦map | · |
TRs = scanr (≪, − ◦) ◦ scan (−◦,≫) ◦map | · |
BLs = scanr (−◦,≪) ◦ scan (≫, − ◦) ◦map | · |
BRs = scanr (−◦, − ◦) ◦map | · |
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Example use of those functions are shown below.

Ts

(
2 7 3
8 4 1

)

=





(
2
) (

7
) (

3
)

(
2
8

) (
7
4

) (
3
1

)





Ls

(
2 7 3
8 4 1

)

=

((
2
) (

2 7
) (

2 7 3
)

(
8
) (

8 4
) (

8 4 1
)

)

Bs

(
2 7 3
8 4 1

)

=





(
2
8

) (
7
4

) (
3
1

)

(
8
) (

4
) (

1
)





Rs

(
2 7 3
8 4 1

)

=

((
2 7 3

) (
7 3

) (
3
)

(
8 4 1

) (
4 1

) (
1
)

)

TLs

(
2 7 3
8 4 1

)

=





(
2
) (

2 7
) (

2 7 3
)

(
2
8

) (
2 7
8 4

) (
2 7 3
8 4 1

)





TRs

(
2 7 3
8 4 1

)

=





(
2 7 3

) (
7 3

) (
3
)

(
2 7 3
8 4 1

) (
7 3
4 1

) (
3
1

)





BLs

(
2 7 3
8 4 1

)

=





(
2
8

) (
2 7
8 4

) (
2 7 3
8 4 1

)

(
8
) (

8 4
) (

8 4 1
)





BRs

(
2 7 3
8 4 1

)

=






(
2 7 3
8 4 1

) (
7 3
4 1

) (
3
1

)

(
8 4 1

) (
4 1

) (
1
)






For each element of the input array, the first four functions generate rectangles
consisting of elements on its top, left, bottom, and right, respectively. The rest for
functions generate rectangles consisting of elements on its top left, top right, bottom
left, and bottom right, respectively.

Those functions can be used to perform directed computations on arrays.

Example 5.21 (Top-left prefix sums). Given a two-dimensional array, two associa-
tive, abiding binary operators, find sums for all top-left prefixes of the given array.

For example, the top-left prefix sums of

(
2 7 3
8 4 1

)

with + operators is given as

follows.

map (reduce (+,+))

(

TLs

(
2 7 3
8 4 1

))

=





reduce (+,+)
(
2
)

reduce (+,+)
(
2 7

)
reduce (+,+)

(
2 7 3

)

reduce (+,+)

(
2
8

)

reduce (+,+)

(
2 7
8 4

)

reduce (+,+)

(
2 7 3
8 4 1

)





=

(
2 9 12
10 21 25

)
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Function surrounds to Generate Surrounding Rectangles

For each element in the given array, the function surrounds generates the all rectan-
gles surrounding the element. This function corresponds to the simultaneous use of
the previously-defined eight functions Ts, Ls, Bs, Rs, TLs, TRs, BLs, and BRs, except
that each rectangle generated by surrounds does not contain the element itself.

The function surrounds is defined by the following two-phase computation: (1)
computation of the parts of the northwest (i.e. c, n, w and nw) by scan, and (2)
that of the other parts by scanr.

surrounds = scanr(⊕r,⊗r) ◦map fr ◦ scan(⊕f ,⊗f ) ◦map ff
where
ff a = (a,NIL,NIL,NIL)
(ca, na, wa, nwa)⊕f (cb, nb, wb, nwb) = ( cb

︸︷︷︸

c

, na−◦|ca|−◦nb
︸ ︷︷ ︸

n

, wb
︸︷︷︸

w

, nwa−◦wa−◦nwb
︸ ︷︷ ︸

nw

)

(ca, na, wa, nwa)⊗f (cb, nb, wb, nwb) = ( cb
︸︷︷︸

c

, nb
︸︷︷︸

n

, wa − ◦ |ca| −◦wb
︸ ︷︷ ︸

w

, nwa − ◦na − ◦nwb
︸ ︷︷ ︸

nw

)

fr (c, n, w, nw) = (c, n,NIL,NIL, w,NIL, nw,NIL,NIL)
(ca, na, sa, ea, wa, nea, nwa, sea, swa)⊕r (cb, nb, sb, eb, wb, neb, nwb, seb, swb)
= ( ca

︸︷︷︸

c

, na
︸︷︷︸

n

, sa−◦ |cb|−◦ sb
︸ ︷︷ ︸

s

, ea
︸︷︷︸

e

, wa
︸︷︷︸

w

, nea
︸︷︷︸

ne

, nwa
︸︷︷︸

nw

, sea−◦ eb−◦ seb
︸ ︷︷ ︸

se

, swa−◦ wb−◦ swb
︸ ︷︷ ︸

sw

)

(ca, na, sa, ea, wa, nea, nwa, sea, swa)⊗r (cb, nb, sb, eb, wb, neb, nwb, seb, swb)
= ( ca

︸︷︷︸

c

, na
︸︷︷︸

n

, sa
︸︷︷︸

s

, ea − ◦ |cb| −◦ eb
︸ ︷︷ ︸

e

, wa
︸︷︷︸

w

, nea − ◦ nb − ◦ neb
︸ ︷︷ ︸

ne

, nwa
︸︷︷︸

nw

, sea − ◦ sb − ◦ seb
︸ ︷︷ ︸

se

, swa
︸︷︷︸

sw

)

Here, NIL is a special value to indicate that there is no value, and we treat it as an
identity of−◦ and − ◦ for simplification of the notation. Thus, NIL−◦ x = x, x−◦NIL = x,
NIL − ◦ x = x, and x − ◦ NIL = x. Each element of the resulting array is a tuple of nine
elements. The meaning of each element of the tuple is as follows: c is the center
element; s is an array of the elements on the south of the element; similarly n, e
and w are arrays of the elements on the north, east and west respectively; ne, nw,
se and sw are arrays of the elements on the northeast, northwest, southeast and
southwest.

The function surrounds can be used to describe computations known as matrix-
convolutions [Jai89, Rus06, GW06], in which each element in the resulting array
depends on its surrounding elements. This set of computations includes important
and fundamental problems such as image filters, difference methods, and theN -body
problem.

Example 5.22 (Image filter). An image filter by matrix-convolution is described
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26666664 0 2 2 6 63 4 3 3 64 5 5 5 66 5 5 9 76 6 6 7 7 37777775 surrounds 26666664 Æ Æ Æ Æ ÆÆ Æ Æ Æ ÆÆ Æ Æ Æ ÆÆ Æ Æ Æ ÆÆ Æ Æ Æ Æ 3777777526666664 37777775
26666664 0 2 2 6 63 4 3 3 64 5 5 5 66 5 5 9 76 6 6 7 7 3777777526666664 37777775nwsw nesenw es map shrink

shrink 26666664 Æ Æ Æ Æ ÆÆ Æ Æ Æ ÆÆ Æ Æ Æ ÆÆ Æ Æ Æ ÆÆ Æ Æ Æ Æ 3777777526666664 37777775
26666664 0 2 2 6 63 4 3 3 64 5 5 5 66 5 5 9 76 6 6 7 7 3777777526666664 2 2 64 3 35 5 5 3777777526666664 37777775 map f 26666664 �5 4 �1 19 187 7 1 �5 156 7 7 2 1215 3 0 21 1318 13 12 13 21 37777775

sum Æ zipwith(�) 264 0 �1 0�1 5 �10 �1 0 375

Figure 5.6. An image of the sharpen filter written with surrounds

with surrounds as follows.

imagefilter ker = map (convker) ◦map shrink 1 ◦ surrounds
where
shrink 1 = id × B × T × L×R× BL× BR × TL× TR
B = ([| · |,≫, − ◦]), T = ([| · |,≪, − ◦]), L = ([| · |,−◦,≪ ]), R = ([| · |,−◦,≫ ]),
BL = ([| · |,≫,≪ ]),BR = ([| · |,≫,≫ ]),TL = ([| · |,≪,≪ ]),TR = ([| · |,≪,≫ ])

The function imagefilter ker is an image filter with the coefficient matrix ker , which
is used to compute weighted sum of the surrounding pixels. The shrink 1 reduces
each part of the gathered surrounding elements to the element closest to the center,
and the function conv ker calculates the weighted sum of them. The functions B and
T take the bottom row and the top row of the input array respectively. Similarly,
each of L, R, BL, BR, TL and TR takes corresponding part of the input array.
Figure 5.6 shows an image of execution of the sharpen-filter by the above general
program.

The following example computes for each element the maximum of the column
and the row in which the element belongs to.

Example 5.23 (Cross maximum). Given a two-dimensional arrays, find for each
element the maximum in the cross of the column and the row that the element
belongs to.

The cross max can be computed by the following program. The shrinkmax reduces
each part of the gathered surrounding elements to the biggest element in the part.
The function max 5 takes the maximum of the column and the row including the
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center element.

crossmax = map max 5 ◦map shrinkmax ◦ surrounds
where shrinkmax = max × · · · ×max

max = ([id , ↑, ↑ ])
max 5 (c, n, s, e, w, , , , ) = c ↑ n ↑ s ↑ e ↑ w

Function rects ′ to Generate All Rectangles

Finally, we will introduce the function rects ′ to generate all rectangles in the given
array.

rects ′ = flatten ◦map TLs ◦ BRs

For example, applying rects ′ to

(
2 7 3
8 4 1

)

, we get the following result.

rects ′
(
2 7 3
8 4 1

)

= (flatten ◦map (TLs))






(
2 7 3
8 4 1

) (
7 3
4 1

) (
3
1

)

(
8 4 1

) (
4 1

) (
1
)






= flatten
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2 7 3
)
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2
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8 4
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2 7 3
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)
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(
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) (
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)









(
3
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(
3
1

)
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8
) (

8 4
) (
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)) ((

4
) (

4 1
)) ((

1
))







=
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2
) (

2 7
) (

2 7 3
) (

7
) (

7 3
) (

3
)

(
2
8

) (
2 7
8 4

) (
2 7 3
8 4 1

) (
7
4

) (
7 3
4 1

) (
3
1

)

(
8
) (

8 4
) (

8 4 1
) (

4
) (

4 1
) (

1
)







The example application described with rects ′ is the maximum rectangle prob-
lem, which has already been discussed in Section 4.3.4. This is a simplified problem
of pattern matching in two-dimensional data structures.

Example 5.24 (Maximum rectangle sum). Its statement is as follows: Given a
two-dimensional array, find the maximum of sums of all the rectangle areas in the
array. This problem was originated by Bentley [Ben84a,Ben84b] and improved by
Takaoka [Tak02].

For example, the answer is 15 for the following data.




3 −1 4 −1 −5
1 −4 −1 5 −3
−4 1 5 3 1





Here, the sub-rectangle contributing the answer is denoted by bold numbers. The
program to solve the problem is given as follows.

reduce (↑, ↑) ◦map (reduce (+,+)) ◦ rects ′
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5.3.3 Useful Properties on Predicates

We will define some properties on predicates, which will be used in development of
optimization theorems for each function shown in the previous section.

The following closure properties are defined on predicates for deriving efficient
sequential implementation [Zan92,Jeu93]. Here, ⇒ means the implication.

Definition 5.25 (Prefix-closed predicate). Predicate p is said to be prefix-closed if
the following equation holds for all x and y.

p (x++ y)⇒ p (x)

Definition 5.26 (Suffix-closed predicate). Predicate p is said to be suffix-closed if
the following equation holds for all x and y.

p (x++ y)⇒ p (y)

Definition 5.27 (Segment-closed predicate). Predicate p is said to be segment-
closed if p is prefix- and suffix closed, i.e. the following equation holds for all x, y
and z.

p (x++ y ++ z)⇒ p (y)

Basically, those properties guarantee that we can know the result of the predicate
for a long list from the result for smaller segments of the list. The following property
is the almost converse of the segment-closedness.

Definition 5.28 (Overlap-closed predicate). Predicate p is said to be overlap-closed
if the following equation holds for all x, y and z.

p (x++ y) ∧ p (y ++ z) ∧ y 6= [ ]⇒ p (x++ y ++ z)

Prefix-closed property plays the most important role in derivation of efficient
sequential implementation of segment problems [Zan92, Jeu93]. Other properties
are used as auxiliary tools to improve the derived implementation. However, in
derivation of efficient parallel implementation, the pair of segment-closed property
and overlap-closed property plays the most important role, which will be shown
later.

A candidate of segment-closed and overlap-closed predicates is given by a rela-
tion [Zan92].
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Definition 5.29 (Relational predicate). Given a relation R, relational predicate pR
is defined as follows.

pR (x) =
∧{aRb | [a, b] ∈ segments x}

Here, segments x returns a set of segments (contiguous subsequences) of x, i.e.,
segments x = { y | u ++ y ++ v = x }. Note that [a, b] ∈ segments x means that
a and b are successive elements in x, since segments x generates all contiguous
subsequences of x and [a, b] ∈ segments x takes such subsequences of two elements.
Relational predicate pR is true for the given list x, if all successive elements a and b
in x satisfy the relation R, i.e. aRb = True.

We can also show the converse, i.e., a segment-closed, overlap-closed predicate is
a relational predicate. The following lemma shows the relation between relational
predicates and segment-closed, overlap-closed predicates.

Lemma 5.30 (Relational predicate). Given predicate p that is true for all singletons
and empty list, the following statements are equivalent.

1. p is segment-closed and overlap-closed.

2. p is relational.

Proof. 2 ⇒ 1) Since p is relational, there exists a relation R and the following equation
holds.

p (x) =
∧

{aRb | [a, b] ∈ segments x}

First, we show that p is segment-closed.

p (x++ y ++ z)
= { unfolding p }

∧{aRb | [a, b] ∈ segments (x++ y ++ z)}
⇒ { segments y ⊆ segments (x++ y ++ z) }

∧{aRb | [a, b] ∈ segments y}
= { folding p }

p (y)

Next, we show that p is overlap-closed.

p (x++ y) ∧ p (y ++ z) ∧ y 6= [ ]
= { unfolding p }

∧{aRb | [a, b] ∈ segments (x++ y)} ∧∧{aRb | [a, b] ∈ segments (y ++ z)} ∧ y 6= [ ]

⇒







y 6= [ ]⇒
{[a, b] | [a, b] ∈ segments (x++ y)} ∪ {[a, b] | [a, b] ∈ segments (y ++ z)}
= {[a, b] | [a, b] ∈ segments (x++ y ++ z)}







∧{aRb | [a, b] ∈ segments (x++ y ++ z)}
= { folding p }

p (x++ y ++ z)
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1⇒ 2) Letting R = {(a, b) | p ([a, b])}, we show p = pR by induction.
For base cases, we have p ([ ]) = p ([a]) = pR ([]) = pR ([a]) = True by assumption.
For induction case, we have p ([a] ++ x) = pR ([a] ++ x) by the following calculation.

p ([a] ++ x)
= { segment-closed and overlap-closed }

p (x) ∧ p ([a] ++ [head x])
= { induction hypothesis and definition of R }

pR (x) ∧ aR(head x)
= { definition of pR }

pR ([a] ++ x)

Thus, p = pR and p is relational.

In the above lemma, we assumed that the predicate p is true for all singletons
and empty list for simplicity. However, we can remove this assumption by letting
values of relational predicate pR in the proof be those of the given predicate p.

The following predicates are examples of relational predicates.

ascending (x) = p< (x)
descending (x) = p> (x)
flat (x) = p= (x)
smoothc (x) = pRc

(x) where aRcb = |a− b| ≤ c

Predicate ascending is true when the given list is ascendingly sorted, while descending
is true for descendingly sorted lists. Predicate flat is true if the all elements in the
given list are the same. Predicate smoothc is true if the maximum of differences of
successive elements is less than or equal to c. Especially, flat = smooth0.

It is worth mentioning about composition of predicates [Zan92]. Each closure
property of prefix-closed, suffix-closed, segment-closed and overlap-closed is closed
under disjunction. Each closure property of prefix-closed, suffix-closed, and segment-
closed is closed also under conjunction, but overlap-closed property is not closed
under conjunction. For example, ascending and descending are both overlap-closed,
but ascending ∨ descending is not overlap-closed since we can make a counterexam-
ple: ascending(x ++ y) ∧ descending(y ++ z) ∧ y 6= [ ] implies neither ascending(x ++
y ++ z) nor descending(x++ y ++ z).

5.3.4 Optimization Theorems for the Nested Reductions

In this section, we will give optimization theorems for nested reductions described
with the generation functions discussed so far. We will develop a theory of opti-
mizations for each generation function one by one, because in our theory the data
structure and the computation structure are closely related to each other, and the
structures of nested data are determined by the generation functions.

First, we will give theories for nested reductions on lists. Then, we will proceed
to theories for two-dimensional arrays.
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Optimization Theory of inits

In this section, we will give a theory for optimization of nested reductions described
with inits.

The following two lemmas are well-known lemmas of inits [Bir87].

Lemma 5.31 (Inits-map promotion). For function f , the following equation holds.

map (map f) ◦ inits = inits ◦map f

This lemma gives us a way to promote the application of function f through
inits. The number of applications of function f on the left hand side is n(n+ 1)/2,
while that on the right hand side is n. So, transformation from the left hand side
to the right hand side improves the efficiency. Also, the lemma enables us to ignore
a function g in the generate-and-test specification ([f,⊕]) ◦map ([g,⊗]) ◦ filter p ◦inits,
since we can replace g with the identity function id and apply g to the input of inits
beforehand (of course, we need some tricks to move through filter p).

Lemma 5.32 (Scan). For any associative binary operator ⊕, the following equation
holds.

scan (⊕) = map (reduce (⊕)) ◦ inits

This lemma gives us the relation between computations of prefix sums by scan

and by nested reductions with inits. It means that we can use scan to compute
nested reductions if the outer reduction is id = ([[·],++]), which results in the smaller
number of uses of the operator ⊕.

The following theorem gives efficient parallel implementation of nested reductions
for inits when two reductions have distributivity. One of the most famous problems
for which this theorem is applicable is maximum initial-segment sum problem (also
known as maximum prefix sum problem), which is an instance of maximum marking
problems [SHTO00,Bir01].

Theorem 5.33 (Maximum initial-segment sum). Provided that ⊕ is associative,
and ⊗ is associative and left-distributive over ⊕, the following equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ inits = π1 ◦ ([pair ,⊙])
where (i1, s1)⊙ (i2, s2) = (i1 ⊕ (s1 ⊗ i2), s1 ⊗ s2)

pair a = (a, a)

Proof. We show the theorem by induction.
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For base case, we have LHS [a] = RHS [a] by the following calculation.

LHS [a]
= { LHS }

(reduce (⊕) ◦map (reduce (⊗)) ◦ inits) [a]
= { definition of inits, map , and reduce }

a
= { definition of π1, homomorphism, and pair }

(π1 ◦ ([pair ,⊙])) [a]
= { RHS }

RHS [a]

For induction case, we have LHS (x ++ y) = RHS (x ++ y) by the following
calculation.

LHS (x++ y)
= { LHS }

(reduce (⊕) ◦map (reduce (⊗)) ◦ inits) (x++ y)
= { definition of function composition, unfolding inits, last (inits x) = x }

(reduce (⊕) ◦map (reduce (⊗))) (inits x++map (x++) (inits y))
= { definition of function composition, map and reduce }

reduce (⊕) (map (reduce (⊗)) (inits x))
⊕reduce (⊕) (map ((reduce (⊗)) x⊗)(map (reduce (⊗)) (inits y)))

= { distributivity of ⊗ }
reduce (⊕) (map (reduce (⊗)) (inits x))

⊕(reduce (⊗) x⊗ reduce (⊕) (map (reduce (⊗)) (inits y)))
= { induction hypothesis }

(π1 ◦ ([pair ,⊙])) x⊕ (reduce (⊗) x⊗ (π1 ◦ ([pair ,⊙])) y)
= { reduce (⊗) x = π2 (([pair ,⊙]) x) (shown below) }

(π1 ◦ ([pair ,⊙])) x⊕ ((π2 (([pair ,⊙]) x))⊗ (π1 ◦ ([pair ,⊙])) y)
= { definition of ⊙ }

π1 (([pair ,⊙]) x⊙ ([pair ,⊙]) y)
= { definition of homomorphism, and function composition }

(π1 ◦ ([pair ,⊙])) (x++ y)
= { RHS }

RHS (x++ y)
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Finally, we show that reduce (⊗) x = π2 (([pair ,⊙]) x). For base case, we have

LHS [a]
= { LHS }

reduce (⊗)[a]
= { definition of reduce }

a
= { definition of π2, homomorphism, and pair }

π2 (([pair ,⊙]) [a])
= { RHS }

RHS [a]

For induction case, we have

LHS (x++ y)
= { LHS }

reduce (⊗) (x++ y)
= { definition of reduce }

reduce (⊗) x⊗ reduce (⊗) y
= { induction hypothesis }

π2 (([pair ,⊙]) x)⊗ π2 (([pair ,⊙]) y)
= { definition of ⊙ }

π2 (([pair ,⊙]) x⊙ ([pair ,⊙]) y)
= { definition of homomorphism }

π2 (([pair ,⊙]) (x++ y))
= { RHS }

RHS (x++ y)

The resulting program (the right hand side) of the theorem uses only one reduc-
tion with the new operator ⊙, while the original program (the left hand side) uses
two nested reductions with inits. The new operator ⊙ is applied to tuples. The first
element of a tuple is equal to the result of the original program. The second element
of the tuple is equal to the reduction of the same input with operator ⊗, which is
used to improve efficiency of the program by reusing the partial results effectively.

The resulting program (the right hand side of the equation) is more efficient than
the original program. This is because the cost of the new operator is proportional
to the cost of operators in the original reductions. Also, the resulting program has
no intermediate data structures.

The following theorem extends Theorem 5.33, which allows filtering with the
given predicate. It gives efficient parallel implementation of nested reductions for
inits when two reductions have distributivity and the predicate is relational.
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Theorem 5.34 (Maximum p-initial-segment sum). Provided that ⊕ is associative,
⊗ is associative and left-distributive over ⊕, and predicate p is relational, the fol-
lowing equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ inits = π1 ◦ ([pentuple,�])
where
(i1, s1, h1, l1, p1) � (i2, s2, h2, l2, p2) =

(i, s1 ⊗ s2, h1 ≪ h2, l1 ≫ l2, p1 ∧ p2 ∧ p ([l1, h2]))
where i = i1 ⊕ if p1 ∧ p ([l1, h2]) then s1 ⊗ i2 else ı⊕

pentuple a = (a, a, a, a, T )

Proof. We show the theorem by induction.

For base case, we have

LHS [a]
= { LHS }

(reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ inits) [a]
= { definition of inits, map , reduce and filter , p is true for singleton }

a
= { definition of π1, homomorphism, and pentuple }

(π1 ◦ ([pentuple,�])) [a]
= { RHS }

RHS [a]

For induction case, we have the following calculation.

LHS (x++ y)
= { LHS }

(reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ inits) (x++ y)
= { definition of inits }

(reduce (⊕) ◦map (reduce (⊗)) ◦ filter p) (inits x++ (map (x++) (inits y)))
= { definition of filter , reduce, and map }

(reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ inits) x
⊕ (reduce (⊕) ◦map (reduce (⊗)) ◦ filter p) (map (x++) (inits y))

To proceed more, we calculate a part of the above equation filter p (map (x++) (inits y))
as follows.

filter p (map (x++) (inits y))
= { p is relational: p (x++ y)⇒ p (y) }

filter p (map (x++) (filter p (inits y)))
= { p is relational: p (x++ y) = p (y) ∧ p (x) ∧ p ([last x, head y]) }

if p (x) ∧ p ([last x, head y]) then map (x++) (filter p (inits y)) else [ ]
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Using this result, we proceed a wider part of the above equation as follows.

(reduce (⊕) ◦map (reduce (⊗)) ◦ filter p) (map (x++) (inits y))
= { above calculation }

(reduce (⊕) ◦map (reduce (⊗)))
(if p (x) ∧ p ([last x, head y]) then map (x++) (filter p (inits y)) else [ ])

= { distributivity of if-then-else, definition of map and reduce }
if p (x) ∧ p ([last x, head y])
then reduce (⊕) (map ((reduce (⊗)) x⊗) (map (reduce (⊗)) (filter p (inits y)))))
else ı⊕

= { distributivity of ⊗ }
if p (x) ∧ p ([last x, head y])
then reduce (⊗) x⊗ reduce (⊕) (map (reduce (⊗)) (filter p (inits y))) else ı⊕

Now, we resume the suspended calculation for induction case.

LHS (x++ y)
= { resume }
(reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ inits) x
⊕ (reduce (⊕) ◦map (reduce (⊗)) ◦ filter p) (map (x++) (inits y))

= { above calculation }
(reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ inits) x
⊗ if p (x) ∧ p ([last x, head y])

then reduce (⊗) x⊗ reduce (⊕) (map (reduce (⊗)) (filter p (inits y)))
else ı⊕

= { induction hypothesis }
(π1 ◦ ([pentuple,�])) x
⊗ if p (x) ∧ p ([last x, head y]) then reduce (⊗) x⊗ (π1 ◦ ([pentuple,�])) y else ı⊕

= { ( , reduce (⊗) x, head x, last x, p (x)) = ([pentuple,�]) x (shown below) }
(π1 ◦ ([pentuple,�])) x
⊗ if (π5 ◦ ([pentuple,�])) x ∧ p ([(π4 ◦ ([pentuple,�])) x, (π3 ◦ ([pentuple,�])) y])
then (π2 ◦ ([pentuple,�])) x⊗ (π1 ◦ ([pentuple,�])) y else ı⊕

= { definition of � }
(π1 ◦ ([pentuple,�])) (x++ y)

= { RHS }
RHS (x++ y)

Finally, we show ( , reduce (⊗) x, head x, last x, p (x)) = ([pentuple,�]) x. For base
case, we have

( , reduce (⊗) [a], head [a], last [a], p ([a]))

= { definition of each function, p is relational }
( , a, a, a, T )

= { definition of homomorphism and pentuple }
([pentuple,�]) [a]
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For induction case, we have

( , reduce (⊗) (x++ y), head (x++ y), last (x++ y), p (x++ y))

= { definition of each function, p is relational }
( , reduce (⊗) x⊗ reduce (⊗) y,
head x≪ head y, last x≫ head y, p x ∧ p y ∧ p ([head x, last y]))

= { definition of � }
( , reduce (⊗) x, head x, last x, p x) � ( , reduce (⊗) y, head y, last y, p y)

= { induction hypothesis }
([pentuple,�]) x� ([pentuple,�]) y

= { definition of homomorphism }
([pentuple,�]) (x++ y)

Thus, we have ( , reduce (⊗) x, head x, last x, p (x)) = ([pentuple,�]) x.

Similar to the previous theorem, the resulting program (the right hand side) of
the theorem uses only one reduction with the new operator �, while the original
program (the left hand side) uses two nested reductions with inits. The cost of the
new operator is proportional to the cost of operators in the original reductions and
the application of p. So, the resulting program is more efficient than the original
program.

The new operator � is applied to pentuples. The first element of a pentuple is
equal to the result of the original program. The second element of the pentuple is
equal to the reduction of the same input with operator ⊗, which is used to improve
efficiency of the program by reusing the partial results effectively. The third and
forth elements are the edge elements of the input. Those edge elements are used to
check whether results from two recursions in divide-and-conquer computation can
be connected to make a better solution. Since the predicate p is relational, we can
check the connectability by using only elements on the edge. The fifth element is a
Boolean value that is the result of p applied to the input.

Here, we can reduce the size of pentuples by eliminating the fifth element (it
corresponds to p (x)) for simplicity, when we introduce an assumption that ı⊗ is the
zero of ⊗, i.e. ı⊕ ⊗ a = ı⊕.

Corollary 5.35 (Maximum p-initial-segment sum (simplified)). Provided that ⊕ is
associative, ⊗ is associative and left-distributive over ⊕, the identity ı⊕ is the zero
of ⊗, and predicate p is relational, the following equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ inits = π1 ◦ ([quadruple,⊠])
where
(i1, s1, h1, l1)⊠ (i2, s2, h2, l2) = (i1 ⊕ (s1 ⊗ i2)l1,h2

, (s1 ⊗ s2)l1,h2
, h1 ≪ h2, l1 ≫ l2)

quadruple a = (a, a, a, a)
(a)l,h = if p ([l, h]) then a else ı⊕
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Proof. To simplify the result of the theorem, we add an invariant to the result of
Theorem 5.34. The invariant added to the pentuple (i, s, h, t, p) is ¬p ⇒ s = ı⊕.
In the following calculation, we derive a operator slightly changed from that of
Theorem 5.34.

i
= { definition }

i1 ⊕ if p1 ∧ p ([l1, h2]) then s1 ⊗ i2 else ı⊕
= { splitting condition }

i1 ⊕ if p ([l1, h2]) then (if p1 then (s1 ⊗ i2) else ı⊕) else ı⊕
= { assumption: ı⊕ is the zero }

i1 ⊕ if p ([l1, h2]) then ((if p1 then s1 else ı⊕)⊗ i2) else ı⊕
= { s′1 = if p1 then s1 else ı⊕ }

i1 ⊕ if p ([l1, h2]) then (s′1 ⊗ i2) else ı⊕
= { definition of (a)t,h }

i1 ⊕ (s′1 ⊗ i2)l1,h2

Computation of s′ = if p then s else ı⊕ is as follows.

s′

= { definition }
if p then s else ı⊕

= { computation of s and p }
if p1 ∧ p2 ∧ p ([l1, h2]) then s1 ⊗ s2 else ı⊕

= { splitting condition }
if p ([l1, h2]) then (if p1 then s1 else ı⊕)⊗ (if p1 then s2 else ı⊕) else ı⊕

= { definition of s’ }
if p ([l1, h2]) then s′1 ⊗ s′2 else ı⊕

= { definition of (a)t,h }
(s′1 ⊗ s′2)l1,h2

Now, we can use s′ instead of s and p in the pentuple (i, s, h, t, p), since p and s are
not used by computation of other parts. Thus, replacing s and p in the pentuple
with s′ and rename s′ as s, we get the reduced operator ⊠.

The resulting program (the right hand side) uses the new reduction operator ⊠
that is applied on quadruples. The difference from the result of Theorem 5.34 is that
the second element becomes the identity ı⊕ of ⊕ when the input does not satisfy
the predicate p.

Optimization Theory of tails

In this section, we will give a theory for optimization of nested reductions described
with tails, which is similar to that of inits.

The following two lemmas are well-known lemmas of tails [Bir87].
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Lemma 5.36 (Tails-map promotion). For function f , the following equation holds.

map (map f) ◦ tails = tails ◦map f

This lemma gives us a way to promote the application of function f through
tails. The number of applications of function f on the left hand side is n(n + 1)/2,
while that on the right hand side is n. So, transformation from the left hand side
to the right hand side improves the efficiency. Also, the lemma enables us to ignore
a function g in the generate-and-test specification ([f,⊕]) ◦map ([g,⊗]) ◦ filter p ◦tails,
since we can replace g with the identity function id and apply g to the input of tails
beforehand (of course, we need some tricks to through filter p).

Lemma 5.37 (Scanr). For any associative binary operator⊕, the following equation
holds.

scanr (⊕) = map (reduce (⊕)) ◦ tails
This lemma gives us the relation between computations of suffix sums by scanr

and by nested reductions with tails. It means that we can use scanr to compute
nested reductions if the outer reduction is id = ([[·],++]), which results in the smaller
number of uses of the operator ⊕.

The following theorem gives efficient parallel implementation of nested reductions
for tails when two reductions have distributivity. One of the most famous problems
for which this theorem is applicable is maximum tail-segment sum problem (also
known as maximum suffix sum problem), which is an instance of maximum marking
problems [SHTO00,Bir01].

Theorem 5.38 (Maximum tail-segment sum). Provided that ⊕ is associative, and
⊗ is associative and right-distributive over ⊕, the following equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ tails = π1 ◦ ([pair ,⊛])
where (t1, s1)⊛ (t2, s2) = ((t1 ⊗ s2)⊕ t2, s1 ⊗ s2)

pair a = (a, a)

Proof. Similar to the proof of Theorem 5.33.

Similar to the previous theorem, the resulting program (the right hand side) of
the theorem uses only one reduction with the new operator ⊛, while the original
program (the left hand side) uses two nested reductions with tails. The cost of the
new operator is proportional to the cost of operators in the original reductions. So,
the resulting program is more efficient than the original program.

The new operator ⊛ is applied to tuples. The first element of a tuple is equal to
the result of the original program. The second element of the tuple is equal to the
reduction of the same input with operator ⊗, which is used to improve efficiency of
the program by reusing the partial results effectively.

The following theorem extends Theorem 5.38, which allows filtering with the
given predicate. It gives efficient parallel implementation of nested reductions for
tails when two reductions have distributivity and the predicate is relational.
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Theorem 5.39 (Maximum p-tail-segment sum). Provided that ⊕ is associative,
⊗ is associative and right-distributive over ⊕, and predicate p is relational, the
following equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ tails = π1 ◦ ([pentuple,�∗ ])
where
(t1, s1, h1, l1, p1) �∗ (t2, s2, h2, l2, p2) =

(t, s1 ⊗ s2, h1 ≪ h2, l1 ≫ l2, p1 ∧ p2 ∧ p ([l1, h2]))
where i = (if p2 ∧ p ([l1, h2]) then t1 ⊗ s2 else ı⊕)⊕ t2

pentuple a = (a, a, a, a, T )

Proof. Similar to the proof of Theorem 5.34.

The resulting program (the right hand side) of the theorem uses only one re-
duction with the new operator �∗ , while the original program (the left hand side)
uses two nested reductions with tails. The cost of the new operator is proportional
to the cost of operators in the original reductions and the application of p. So, the
resulting program is more efficient than the original program.

The new operator �∗ is applied to pentuples. The first element of a pentuple is
equal to the result of the original program. The second element of the pentuple is
equal to the reduction of the same input with operator ⊗, which is used to improve
efficiency of the program by reusing the partial results effectively. The third and
forth elements are the edge elements of the input. Those edge elements are used to
check whether results from two recursions in divide-and-conquer computation can
be connected to make a better solution. Since the predicate p is relational, we can
check the connectability by using only elements on the edge. The fifth element is a
Boolean value that is the result of p applied to the input.

Here, we can reduce the size of pentuples by eliminating the fifth element (it
corresponds to p (x)) for simplicity, when we3 introduce an assumption that ı⊗ is
the zero of ⊗, i.e. a⊗ ı⊕ = ı⊕.

Corollary 5.40 (Maximum p-tail-segment sum (simplified)). Provided that ⊕ is
associative, ⊗ is associative and right-distributive over ⊕, the identity ı⊕ is the zero
of ⊗, and predicate p is relational, the following equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ tails = π1 ◦ ([quadruple,⊠⊞])
where
(t1, s1, h1, l1)⊠⊞ (t2, s2, h2, l2) = ((t1 ⊗ s2)l1,h2

⊕ t2, (s1 ⊗ s2)l1,h2
, h1 ≪ h2, l1 ≫ l2)

quadruple a = (a, a, a, a)
(a)l,h = if p ([l, h]) then a else ı⊕

Proof. Similar to the proof of Corollary 5.35.

The resulting program (the right hand side) uses the new reduction operator ⊠⊞
that is applied on quadruples. The difference from the result of Theorem 5.39 is that
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the second element becomes the identity ı⊕ of ⊕ when the input does not satisfy
the predicate p.

A sufficient condition of the assumption that ı⊕ is the zero of ⊗ is that ⊗
distributes over ⊕. So, we will use this condition in implementation of the library.

Optimization Theory of segs

In this section, we will give a theory for optimization of nested reductions described
with segs.

The following lemma is well-known lemma of segs [Bir87].

Lemma 5.41 (Segs-map promotion). For function f , the following equation holds.

map (map f) ◦ segs = segs ◦map f

The lemma gives us a way to promote the application of function f through segs.
The number of applications of function f on the left hand side is O(n3), while that
on the right hand side is n. So, transformation from the left hand side to the right
hand side improves the efficiency. Also, the lemma enables us to ignore a function g
in the generate-and-test specification ([f,⊕]) ◦map ([g,⊗]) ◦ filter p ◦segs, since we can
replace g with the identity function id and apply g to the input of segs beforehand
(of course, we need some tricks to through filter p).

The following theorem gives efficient parallel implementation of nested reductions
for segs when two reductions have distributivity. One of the most famous problems
for which this theorem is applicable is maximum segment sum problem [Bir87],
which is an instance of maximum marking problems [SHTO00,Bir01].

Theorem 5.42 (Maximum segment sum). Provided that ⊕ is associative and com-
mutative, and ⊗ is associative and distributive over ⊕, the following equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ segs = π1 ◦ ([quadruple,⊚])
where
(m1, t1, i1, s1)⊚ (m2, t2, i2, s2) =
(m1 ⊕m2 ⊕ (t1 ⊗ i2), (t1 ⊗ s2)⊕ t2, i1 ⊕ (s1 ⊗ i2), s1 ⊗ s2)

quadruple a = (a, a, a, a)

Proof. We can prove the theorem by the following calculation.

LHS
= { LHS }

reduce (⊕) ◦map (reduce (⊗)) ◦ segs
= { definition of segs }

reduce (⊕) ◦map (reduce (⊗)) ◦ reduce (++) ◦map inits ◦ tails
= { promotion of map }

reduce (⊕) ◦ reduce (++) ◦map (map (reduce (⊗))) ◦map inits ◦ tails
= { promotion of reduce }

reduce (⊕) ◦map (reduce (⊕)) ◦map (map (reduce (⊗))) ◦map inits ◦ tails
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= { distributivity of map }
reduce (⊕) ◦map ((reduce (⊕)) ◦(map (reduce (⊗))) ◦ inits) ◦ tails

= { Theorem 5.33 }
reduce (⊕) ◦map (π1 ◦ ([pair ,⊙])) ◦ tails

= { making ⊕′ so that (a1, b1)⊕′ (a2, b2) = (a1 ⊕ a2, b1 ⊕ b2), Lemma 5.36 }
π1 ◦ reduce (⊕′) ◦map (reduce (⊙)) ◦ tails ◦map pair

= { Theorem 5.38 (commutativity of ⊕ guarantees distributivity of ⊙ over ⊕′)}
π1 ◦ π1 ◦ ([pair ,⊛]) ◦map pair

= { fusing two π1s, and two pairs }
π1 ◦ ([quadruple,⊚])

= { RHS }
RHS

Definition of ⊛ in the above calculation is given as follows.

((m1, t1), (i1, s1))⊛ ((m2, t2), (i2, s2))

= { definition of ⊛ in Theorem 5.38 }
(((m1, t1)⊙ (i2, s2))⊕′ (m2, t2), (i1, s1)⊙ (i2, s2))

= { definition of ⊙ in Theorem 5.33 }
((m1 ⊕ (t1 ⊗ i2), t1 ⊗ s2)⊕′ (m2, t2), (i1 ⊕ (s1 ⊗ i− 2), s1 ⊗ s2))

= { definition of ⊕′ shown above }
((m1 ⊕ (t1 ⊗ i2)⊕m2, (t1 ⊗ s2)⊕ t2), (i1 ⊕ (s1 ⊗ i− 2), s1 ⊗ s2))

Flattening the nested pair into quadruple, we get the definition of ⊚.

The resulting program (the right hand side) of the theorem uses only one reduc-
tion with the new operator ⊚, while the original program (the left hand side) uses
two nested reductions with segs. The cost of the new operator is proportional to
the cost of operators in the original reductions. So, the resulting program is more
efficient than the original program.

The new operator ⊚ is applied to quadruples. The first element of a tuple is
equal to the result of the original program. The second and the third elements are
results of the original nested reductions with tails and inits. The last element is equal
to the reduction of the same input with operator ⊗. These extra elements are used
to improve efficiency of the program by reusing the partial results effectively.

The following theorem extends Theorem 5.42, which allows filtering with the
given predicate. It gives efficient parallel implementation of nested reductions for
segs when two reductions have distributivity and the predicate is relational. Deriva-
tion of efficient sequential implementations for those programs with filtering is shown
in [Zan92,Jeu93].
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Theorem 5.43 (Maximum p-segment sum). Provided that ⊕ is associative and
commutative, ⊗ is associative and distributive over ⊕, the identity ı⊕ is the zero of
⊗, and predicate p is relational, the following equation holds.

reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ segs = π1 ◦ ([hextuple,�])
where
(m1, t1, i1, s1, h1, l1) � (m2, t2, i2, s2, h2, l2)
= ( m1 ⊕m2 ⊕ (t1 ⊗ i2)l1,h2

, (t1 ⊗ s2)l1,h2
⊕ t2, i1 ⊕ (s1 ⊗ i2)l1,h2

,
(s1 ⊗ s2)l1,h2

, h1 ≪ h2, l1 ≫ l2)
hextuple a = (a, a, a, a, a, a)
(a)l,h = if p ([l, h]) then a else ı⊕

Proof. We can prove the theorem by the following calculation.

LHS
= { LHS }

reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ segs
= { definition of segs }

reduce (⊕) ◦map (reduce (⊗)) ◦ filter p ◦ reduce (++) ◦map inits ◦ tails
= { promotion of filter , map and reduce }

reduce (⊕) ◦map (reduce (⊕)) ◦map (reduce (⊗)) ◦map (filter p) ◦map inits ◦ tails
= { map distributivity }

reduce (⊕) ◦map ((reduce (⊕)) ◦ (reduce (⊗)) ◦ (filter p) ◦ inits) ◦ tails
= { Collorary 5.35 }

reduce (⊕) ◦map (π1 ◦ ([quadruple,⊠])) ◦ tails
=

{
making ⊕′ such that
(i1, s1, h1, l1)⊕′ (i2, s2, h2, l2) = (i1 ⊕ i2, s1 ⊕ s2, h1 ≪ h2, l1 ≫ l2)

}

π1 ◦ reduce (⊕′) ◦map (reduce (⊠)) ◦ tails ◦map quadruple
= { Theorem 5.38 (⊠ distributes over ⊕′) }

π1 ◦ π1 ◦ ([pair ,⊛]) ◦map quadruple
= { fusing two π1s, fusing pair and quadruple, removing duplicated parts }

π1 ◦ ([hextuple,�])
= { RHS }

RHS

Note that distributivity of ⊠ over ⊕′ is guaranteed for quadruples (i1, s1, h1, l1) and
(i2, s2, h2, l2) of operands of ⊕′ when l1 = l2. Condition l1 = l2 holds in the above
calculation since l1 and l2 are the last element of tail-segments of the same list.
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Definition of ⊛ in the above calculation is given as follows.

((m1, t1, h1, l1), (i1, s1, k1, n1))⊛ ((m2, t2, h2, l2), (i2, s2, k2, n2))

= { definition of ⊛ in Theorem 5.38 }
(((m1, t1, h1, l1)⊠ (i2, s2, k2, n2))⊕′ (m2, t2, h2, l2), (i1, s1, k1, n1)⊠ (i2, s2, k2, n2))

= { definition of ⊠ in Theorem 5.35 }
((m1 ⊕ (t1 ⊗ i2)l1,k2 , (t1 ⊗ s2)l1,k2 , h1 ≪ k2, l1 ≫ n2)⊕′ (m2, t2, h2, l2),

(i1 ⊕ (s1 ⊗ i2)n1,k2 , (s1 ⊗ s2)n1,k2 , k1 ≪ k2, n1 ≫ n2)

= { definition of ⊕′ shown above }
((m1 ⊕m2 ⊕ (t1 ⊗ i2)l1,k2 , (t1 ⊗ s2)l1,k2 ⊕ t2, h1 ≪ k2 ≪ h2, l1 ≫ n2 ≫ l2),

(i1 ⊕ (s1 ⊗ i2)n1,k2 , (s1 ⊗ s2)n1,k2 , k1 ≪ k2, n1 ≫ n2)

If h1 = k1, l1 = n1, h2 = k2 and l2 = n2, then we have h1 ≪ k2 ≪ h2 = k1 ≪ k2 and
l1 ≫ n2 ≫ l2 = n1 ≫ n2. So, for octuple ((m, t, h, l), (i, s, k, n)), we have invariant
h = k and l = n. Using this invariant, we can eliminate k and n from octuples and
we get computation using hextuples. Finally, flattening the hextuples, we get the
definition of ⊚.

The resulting program (the right hand side) of the theorem uses only one reduc-
tion with the new operator �, while the original program (the left hand side) uses
two nested reductions with segs. The cost of the new operator is proportional to
the cost of operators in the original reductions. So, the resulting program is more
efficient than the original program.

The new operator � is applied to hextuples. The first element of a tuple is equal
to the result of the original program. The second and the third elements are results
of the original program in which segs is replaced with tails and inits. The fourth
element is equal to the reduction of the same input with operator ⊗. The fifth and
the sixth elements are the edge elements of the input. Those edge elements are used
to check whether results from two recursions in divide-and-conquer computation
can be connected to make a better solution. Since the predicate p is relational,
we can check the connectability by using only elements on the edge. These extra
elements are used to improve efficiency of the program by reusing the partial results
effectively.

Optimization Theory of neighbors

In this section, we will give a theory for optimization of nested reductions described
with neighbors .

The following theorem links the result of domain specific fusion optimization in
Section 5.2 to the world of nested reductions.
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Theorem 5.44 (Finite-window neighbors). The following equation holds. Also, we
can apply the domain-specific fusion optimization in Section 5.2 to the program on
the right hand side.

map f ◦ neighbors ′ ls rs = map′ f ′ ◦ zipshift ls rs
where f ′(a−m, . . . , a−1, a0, a1, . . . , an) = f([a−m, . . . , a−1], a0, [a1, . . . , an])

zipshift ls rs x =
let z0 = x

z1 = shift≪ r1 z0
z2 = shift≪ r2 z1

...
zn = shift≪ rn zn−1
z−1 = shift≫ l1 z0

...
z−m = shift≪ lm z−(m−1)
[lm, . . . , l1] = ls
[r1, . . . , rn] = rs

in zip z−m (zip z−(m−1) (. . . (zip z0 (. . . (zip zn−1 zn) · · · )) · · · ))

Proof. Skeleton compositions in the program on the right hand side has the target
pattern of the domain-specific fusion optimization in Section 5.2. Thus, we can
apply the optimization to it.

The rest of the proof is to show the equation. We will show it by induction on
the input. We will use rules shown in Appendix C in the following proof.

The base case is trivial. Supposing the input is [a], we get z0 = [a], zi = ri(i ≥ 0),
and z−i = li(i ≥ 0), and thus the right hand side is f([lm, . . . , l1], a, [r1, . . . , rn], which
is equal to the left hand side.

Next, we will show The induction case. To this end, we will first do some small
calculations, whose results will be used later.

map tail (tails (x++ y))
= { definition of tails }

map tail (map (++head (tails y)) (tails x) ++ tails y)
= { head ◦ tails = id by homomorphism fusion }

map tail (map (++y) (tails x) ++ tails y)
= { definition of map, and rule IV }

map (++y) (map tail (tails x)) ++map tail (tails y)

Similarly, we have the following equation.

map init (inits (x++ y)) = map init (inits x) ++map (x++) map init (inits y)

Using the above calculation, we have the following result for the left hand side. Some
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where-clauses are omitted for readability.

(map f ◦ neighbors ′ ls rs) (x++ y)
= { definition of neighbors ′ and neighbors }

(map f ◦map (taker m ◦ (ls++)× id × take n ◦ (++rs))
◦zipP3 ◦ ((map init ◦ inits)△id△(map tail ◦ tails))) (x++ y)

where zipP3 (x, y, z) = zip x y zm = length ls
n = length rs

= { the above calculation, and the definition of map }
(map f ◦map (taker m ◦ (ls++)× id × take n ◦ (++rs))
◦ zipP3 ◦map (id × id × (++y)) ◦ ((map init ◦ inits)△id△(map tail ◦ tails))) x
++ (map f ◦map (taker m ◦ (ls++)× id × take n ◦ (++rs))
◦ zipP3 ◦map ((x++)× id × id) ◦ ((map init ◦ inits)△id△(map tail ◦ tails))) y

= { fusion of zipPL3 and map, and associativity of ++ }
(map f ◦map (taker m ◦ (ls++)× id × take n ◦ (++(y ++ rs)))
◦ zipP3 ◦ ((map init ◦ inits)△id△(map tail ◦ tails))) x
++ (map f ◦map (taker m ◦ ((ls ++ x)++)× id × take n ◦ (++rs))
◦ zipP3 ◦ ((map init ◦ inits)△id△(map tail ◦ tails))) y

= { take n ◦ take n = take n, taker m ◦ taker m = taker m, and folding }
(map f ◦ neighbors ′ ls (take n (y ++ rs))) x
++ (map f ◦ neighbors ′ (taker m (ls ++ x)) rs)) y

Similarly, we will calculate the right hand side. To this end, we first split the zis
in the right hand side into zxi s and z

y
i s. We use rule III to split them.

z0 = zx0 ++ zy0 = x++ y
z1 = zx1 ++ zy1 = shift≪ r1 (zx0 ++ zy0) = shift≪ (head zy0) z

x
0 ++ shift≪ r1 z

y
0

...
zn = zxn ++ zyn = shift≪ (head zyn−1) z

x
n−1 ++ shift≪ rn z

y
n−1

z−1 = zx−1 ++ zy−1 = shift≫ l1 z
x
0 ++ shift≫ (last zx0 ) z

y
0

...
z−m = zx−m ++ zy−m = shift≫ lm zx−(m−1) ++ shift≫ (last zx−(m−1)) z

y
−(m−1)

Then, we show the following equation for i ≥ 0 by induction on i.

zyi = drop i (y ++ [r1, . . . , ri])
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The base case i = 0 is trivial. The induction case is as follows.

zyi
= { definition }

shift≪ ri z
y
i−1

= { induction hypothesis }
shift≪ ri (drop (i− 1) (y ++ [r1, . . . , ri−1]))

= { rule VI }
tail (drop (i− 1) (y ++ [r1, . . . , ri−1])) ++ [ri]

= { definition of drop }
drop i (y ++ [r1, . . . , ri−1]) ++ [ri]

= { y ++ [r1, . . . , ri−1] has at least i elements }
drop i (y ++ [r1, . . . , ri−1, ri])

Using the result we have the following result about zxi .

zxi
= { definition }

shift≪ (head zyi−1) z
x
i−1

= { the above result }
shift≪ (head (drop (i− 1) (y ++ [r1, . . . , ri−1]))) z

x
i−1

= { definition of head , and (y ++ [r1, . . . , ri−1]) has at least i elements. }
shift≪ (head (drop (i− 1) (y ++ rs))) zxi−1

= { i is smaller than or equal to n }
shift≪ (head (drop (i− 1) (take n (y ++ rs)))) zxi−1

s

We can show similar results on zx−is and z
y
−is.

Summarizing above calculation, we have the following result on the right hand
side.

(map′ f ′ ◦ zipshift ls rs) (x++ y)
= (map′ f ′ ◦ zipshift ls (take n (y ++ rs))) x
++(map′ f ′ ◦ zipshift (taker m (ls ++ x)) rs) y

Therefore, using the induction hypothesis, we have shown the induction case for our
first equation.

Optimization Theory of Ts, Ls, Bs, Rs, TLs, TRs, BLs, and BRs

Similar to the functions inits and tails, those functions have promotion lemmas for
map.

Lemma 5.45 (Map promotions for Ts, Ls, Bs, Rs, TLs, TRs, BLs, and BRs). For
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any function f, the following equations hold.

map (map f) ◦ Ts = Ts ◦map f
map (map f) ◦ Ls = Ls ◦map f
map (map f) ◦ Bs = Bs ◦map f
map (map f) ◦ Rs = Rs ◦map f
map (map f) ◦ TLs = TLs ◦map f
map (map f) ◦ TRs = TRs ◦map f
map (map f) ◦ BLs = BLs ◦map f
map (map f) ◦ BRs = BRs ◦map f

Proof. We show the proof for Ts. The others can be proved similarly.

map (map f) ◦ Ts
= { definition of Ts }

map (map f) ◦ scan (−◦,≫) ◦map | · |
= { definition of scan }

map (map f) ◦ ([| · |,⊕′,⊗′]) ◦map | · |
where sx⊕′ sy = sx−◦mapr (zipwith (−◦) (bottom sx)) sy

sx⊗′ sy = sx − ◦ mapc (zipwith (≫) (right sx)) sy
= { definition of map, and fusion of homomorphism (Theorem 4.5) }

([map (map f) ◦ | · | ◦ | · |,⊕′,⊗′])
where sx⊕′ sy = sx−◦mapr (zipwith (−◦) (bottom sx)) sy

sx⊗′ sy = sx − ◦ mapc (zipwith (≫) (right sx)) sy
= { map (map f) ◦ | · | ◦ | · | = | · | ◦ | · | ◦ f }

([| · | ◦ | · | ◦ f,⊕′,⊗′])
where sx⊕′ sy = sx−◦mapr (zipwith (−◦) (bottom sx)) sy

sx⊗′ sy = sx − ◦ mapc (zipwith (≫) (right sx)) sy
= { definition of map and scan }

scan (−◦,≫) ◦map | · | ◦map f
= { definition of Ts }

Ts ◦map f

This lemma gives us a way to promote the application of function f through the
generation functions. The number of applications of function f in the right hand
side is smaller than that in the left hand side.

The combination of the above lemma and the following lemma gives as a way to
promote homomorphism through the generation functions.

Lemma 5.46 (Reducue promotions for Ts, Ls, Bs, Rs, TLs, TRs, BLs, and BRs).
For any binary operators which are associative and have the abide property, the
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following equations hold.

map (reduce (⊖,⊙)) ◦ Ts = scan (⊖,≫)
map (reduce (⊖,⊙)) ◦ Ls = scan (≫,⊙)
map (reduce (⊖,⊙)) ◦ Bs = scanr (⊖,≪)
map (reduce (⊖,⊙)) ◦ Rs = scanr (≪,⊙)
map (reduce (⊖,⊙)) ◦ TLs = scan (⊖,⊙)
map (reduce (⊖,⊙)) ◦ TRs = scanr (≪,⊙) ◦ scan (⊖,≫)
map (reduce (⊖,⊙)) ◦ BLs = scanr (⊖,≪) ◦ scan (≫,⊙)
map (reduce (⊖,⊙)) ◦ BRs = scanr (⊖,⊙)

Proof. We show the proof for Ts. The others can be proved similarly.

map (reduce (⊖,⊙)) ◦ Ts
= { definition of Ts }

map (reduce (⊖,⊙)) ◦ scan (−◦,≫) ◦map | · |
= { definition of scan }

map (reduce (⊖,⊙)) ◦ ([| · |,⊕′,⊗′]) ◦map | · |
where sx⊕′ sy = sx−◦mapr (zipwith (−◦) (bottom sx)) sy

sx⊗′ sy = sx − ◦ mapc (zipwith (≫) (right sx)) sy
= { definition of map, and fusion of homomorphism (Theorem 4.5) }

([map (reduce (⊖,⊙)) ◦ | · | ◦ | · |,⊕′′,⊗′′])
where sx⊕′′ sy = sx−◦mapr (zipwith (⊖) (bottom sx)) sy

sx⊗′′ sy = sx − ◦ mapc (zipwith (≫) (right sx)) sy
= { map (reduce (⊖,⊙)) ◦ | · | ◦ | · | = | · | }

([| · |,⊕′′,⊗′′])
where sx⊕′′ sy = sx−◦mapr (zipwith (⊖) (bottom sx)) sy

sx⊗′′ sy = sx − ◦ mapc (zipwith (≫) (right sx)) sy
= { definition of scan }

scan (⊖,≫)

Optimization Theory of surrounds

In this section, we will give a theory for optimization of nested reductions described
with surrounds .

The main result of optimization on surrounds is summarized as follows.

Theorem 5.47 (Surrounding). Let the function shrink be defined by homomor-
phisms as follows.

shrink = gc × hn × hs × he × hw × hne × hnw × hse × hsw
where
hn = ([gn,⊕n,⊗n]) , hs = ([gs,⊕s,⊗s]) , he = ([ge,⊕e,⊗e])
hw = ([gw,⊕w,⊗w]) , hne = ([gne,⊕ne,⊗ne]) , hnw = ([gnw,⊕nw,⊗nw])
hse = ([gse,⊕se,⊗se]) , hsw = ([gsw,⊕sw,⊗sw])
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Here, ⊕X and ⊗X are extended to satisfy the following equations: NIL ⊕X x = x,
x⊕X NIL = x, NIL⊗X x = x, and x⊗X NIL = x.

Then, there exist a projection function proj and operators ⊕′f , ⊗′f , ⊕′r, and ⊗′r,
and the following equation holds.

map f ◦map shrink ◦ surrounds =
map (f ◦ proj ) ◦ scanr(⊕′r,⊗′r) ◦map fr

′ ◦ scan(⊕′f ,⊗′f ) ◦map ff
′

Here, the complexity of each of the operators ⊕′f , ⊗′f , ⊕′r, and ⊗′r is bounded by the
largest of ⊕X and ⊗X .

Proof. The theorem is proved by the promotion of map shrink with extending the tuples.

The first step is to promote map shrink through scanr(⊕r,⊗r) since the target program
is written as follows:

map shrink ◦ surrounds = map shrink ◦ scanr(⊕r,⊗r) ◦map fr ◦ scan(⊕f ,⊗f ) ◦map ff .

To do it, we calculate the terms shrink (a⊕r b) and shrink (a⊗r b) .

shrink ((ca, na, sa, ea, wa, nea, nwa, sea, swa)⊕r (cb, nb, sb, eb, wb, neb, nwb, seb, swb))
= { Definition of ⊕r }

shrink (ca, na, sa−◦ |cb|−◦ sb, ea, wa, nea, nwa, sea−◦ eb−◦ seb, swa−◦ wb−◦ swb)
= { Definition of shrink }

(gc ca, hn na, hs (sa−◦ |cb|−◦ sb), he ea, hw wa, hne nea, hnw nwa,
hse (sea−◦ eb−◦ seb), hsw (swa−◦ wb−◦ swb))

= { Definition of homomorphism }
(gc ca, hn na, hs sa ⊕s gs cb ⊕s hs sb, he ea, hw wa, hne nea, hnw nwa,

hse sea ⊕se hse eb ⊕se hse seb, hsw swa ⊕sw hsw wb ⊕sw hsw swb)

shrink ((ca, na, sa, ea, wa, nea, nwa, sea, swa)⊗r (cb, nb, sb, eb, wb, neb, nwb, seb, swb))
= { Definition of ⊗r }

shrink (ca, na, sa, ea − ◦ |cb| −◦ eb, wa, nea − ◦ nb − ◦ neb, nwa, sea − ◦ sb − ◦ seb, swa)
= { Definition of shrink }

(gc ca, hn na, hs sa, he (ea − ◦ |cb| −◦ eb), hw wa,
hne (nea − ◦ nb − ◦ neb), hnw nwa, hse (sea − ◦ sb − ◦ seb), hsw swa)

= { Definition of homomorphism }
(gc ca, hn na, hs sa, he ea ⊗e ge cb ⊗e he eb, hw wa,

hne nea ⊗ne hne nb ⊗ne hne neb, hnw nwa, hse sea ⊗se hse sb ⊗se hse seb, hsw swa)

Here, three different functions, namely gc, ge and gs, are applied to cb and ca . To make
the values ge cb and gs cb, we have to store always cb as well as gc cb that is the result of the
first element. Similarly, n, s, e and w have applications of two different functions. Thus,
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we extend the tuple to store such extra values duplicating c, n, s, e and w as follows.

map shrink ◦ scanr(⊕r,⊗r) ◦map fr = proj ◦map shrink ′ ◦ scanr(⊕′r,⊗′r) ◦map fr
′

where
proj (c, n, s, e, w, ne, nw, se, sw, c′, n′, s′, e′, w′) = (c, n, s, e, w, ne, nw, se, sw)
shrink ′ = gc×hn×hs×he×hw×hne×hnw×hse×hsw×id×hne×hse×hse×hsw
fr
′ (c, n, w, nw) = (c, n,NIL,NIL, w,NIL, nw,NIL,NIL, c, n,NIL,NIL, w)

(ca, na, sa, ea, wa, nea, nwa, sea, swa, c
′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊕r(cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

= (ca, na, sa−◦ |c′b|−◦ sb, ea, wa, nea, nwa, sea−◦ e′b−◦ seb, swa−◦ w′b−◦ swb,
c′a, n

′
a, s
′
a−◦ |c′b|−◦ s′b, e′a, w′a)

(ca, na, sa, ea, wa, nea, nwa, sea, swa, c
′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊗r(cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

= (ca, na, sa, ea − ◦ |c′b| −◦ eb, wa, nea − ◦ n′b − ◦ neb, nwa, sea − ◦ s′b − ◦ seb, swa,
c′a, n

′
a, s
′
a, e
′
a − ◦ |c′b| −◦ e′b, w′a)

Then, we calculate the new terms shrink ′ (a⊕′r b) and shrink ′ (a⊗′r b), .
shrink ((ca, na, sa, ea, wa, nea, nwa, sea, swa, c

′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊕′r (cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

= { Definition of ⊕′r, shrink ′ and homomorphism }
(gc ca, hn na, hs sa ⊕s gs c′b ⊕s hs sb, he ea, hw wa, hne nea, hnw nwa,

hse sea ⊕se hse e′b ⊕se hse seb, hsw swa ⊕sw hsw w′b ⊕sw hsw swb,
c′a, hne n′a, hse s′a ⊕se gse c′b ⊕se hse s′b, he e′a, hw w′a)

= { Creating a new operator, Definition of shrink ′ }
shrink (ca, na, sa, ea, wa, nea, nwa, sea, swa, c

′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊕′′rshrink (cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

where
(ca, na, sa, ea, wa, nea, nwa, sea, swa, c

′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊕′′r(cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

= (ca, na, sa ⊕s gs c′b ⊕s sb, ea, wa, nea, nwa,
sea ⊕se e

′
b ⊕se seb, swa ⊕sw w′b ⊕sw swb,

c′a, n
′
a, s
′
a ⊕se gse c′b ⊕se s

′
b, e
′
a, w

′
a)

shrink ((ca, na, sa, ea, wa, nea, nwa, sea, swa, c
′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊗′r (cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

= { Definition of ⊗′, shrink ′ and homomorphism }
(gc ca, hn na, hs sa, he ea ⊗e ge c′b ⊗e he eb, hw wa,

hne nea ⊗ne hne n′b ⊗ne hne neb, hnw nwa, hse sea ⊗se hse s′b ⊗se hse seb, hsw swa,
ca, hne n′a, hse s′a, hse e′a ⊗se gse c′b ⊗se he e′b, hsw w′a)

= { Creating a new operator, Definition of shrink ′ }
shrink (ca, na, sa, ea, wa, nea, nwa, sea, swa, c

′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊗′′shrink (cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

where
(ca, na, sa, ea, wa, nea, nwa, sea, swa, c

′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊗′′r (cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

= (ca, na, sa, ea ⊗e ge c′b ⊗e eb, wa, nea ⊗ne n
′
b ⊗ne neb, nwa, sea ⊗se s

′
b ⊗se seb, swa,

ca, n
′
a, s
′
a, e
′
a ⊗se gse c′b ⊗se e

′
b, w

′
a)
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Using the above operators, we complete the first promotion:

map shrink ′ ◦ scanr(⊕′r,⊗′r) = scanr(⊕′′r ,⊗′′r) ◦map shrink ′ .

The second step is the promotion of map shrink ′ through map fr
′ .

shrink ′(fr
′ (c, n, w, nw))

= { Definition of shrink ′ and fr
′ }

(gc c, hn n, hs NIL, he NIL, hw w, hne NILhnw nw, hse NIL, hsw NIL,
c, hne n, hse NIL, hse NIL, hsw w)

= { Application of hX to NIL results in NIL }
(gc c, hn n,NIL,NIL, hw w,NILhnw nw,NIL,NIL, c, hne n,NIL,NIL, hsw w)

Here, each of the w and n has two applications of different functions. Thus, we extend
the tuple used in the first stage calculation of surrounds duplicating w and n as follows.

map shrink ′ ◦map fr
′ ◦ scan(⊕f ,⊗f ) ◦map ff

= map shrink ′ ◦map fr
′′ ◦ scan(⊕′f ,⊗′f ) ◦map ff

′

where
fr
′ (c, n, w, nw, n′, w′, n′′, w′′) = (c, n,NIL,NIL, w,NIL, nw,NIL,NIL, c, n′,NIL,NIL, w′)

ff
′ a = (a,NIL,NIL,NIL,NIL,NIL,NIL,NIL)

(ca, na, wa, nwa, n
′
a, w

′
a, n
′′
a, w

′′
a)⊕′f (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b )

= (cb, na−◦ |ca|−◦ nb, wb, nwa−◦ w′′a−◦ nwb, n
′
a−◦ |ca|−◦ n′b, w′b, n′′a−◦ |ca|−◦ n′′b , w′′b )

(ca, na, wa, nwa, n
′
a, w

′
a, n
′′
a, w

′′
a)⊗′f (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b )

= (cb, nb, wa − ◦ |ca| −◦ wb, nwa − ◦ n′′a − ◦ nwb, n
′
b, w

′
a − ◦ |ca| −◦ w′b, n′′b , w′′a − ◦ |ca| −◦ w′′b )

The extra duplication of w and n is used later. Now, we do the promotion of map shrink ′

through map fr
′′ instead of map fr

′ .

shrink ′(fr
′′ (c, n, w, nw, n′, w′, n′′, w′′))

= { Definition of shrink ′ and fr
′′ }

(gc c, hn n, hs NIL, he NIL, hw w, hne NILhnw nw, hse NIL, hsw NIL,
c, hne n′, hse NIL, hse NIL, hsw w′)

= { Application of hX to NIL results in NIL }
(gc c, hn n,NIL,NIL, hw w,NILhnw nw,NIL,NIL, c, hne n′,NIL,NIL, hsw w′)

= { Creating a new function }
fr
′′′ (shrink ′′(c, n, w, nw, n′, w′, n′′, w′′))

where
fr
′′′ (c, n, w, nw, n′, w′, n′′, w′′)

= (gc c, n,NIL,NIL, w,NILnw,NIL,NIL, c, n
′,NIL,NIL, w′)

shrink ′′ = id × hn × hw × hnw × hne × hsw × hnw × hnw

Thus, map shrink ′ ◦map fr
′′ = map fr

′′′ ◦map shrink ′′ .

The first step of the rest of the promotion is the calculation of shrink ′′ (a ⊕′f b) as
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follows.

shrink ′′ ((ca, na, wa, nwa, n
′
a, w

′
a, n
′′
a, w

′′
a)⊕′f (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b ))

= { Definition of ⊕′f and shrink ′′ }
(cb, hn (na−◦ |ca|−◦ nb), hw wb, hnw (nwa−◦ wa−◦ nwb),
hne (n′a−◦ |ca|−◦ n′b), hsw w′b, hnw (n′′a−◦ |ca|−◦ n′′b ), hnw w′′b )

= { Definition of homomorphism }
(cb, hn na ⊕n gn ca ⊕n hn nb, hw wb, hnw nwa ⊕nw hnw w′′a ⊕nw hnw nwb,
hne n′a ⊕ne gne ca ⊕ne hne n′b, hsw w′b, hnw n′′a ⊕nw gnw ca ⊕nw hnw n′′b , hnw w′′b )

= { Creating a new operator }
shrink ′′ (ca, na, wa, nwa, n

′
a, w

′
a, n
′′
a, w

′′
a ⊕′′f shrink ′′ (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b )

where
(ca, na, wa, nwa, n

′
a, w

′
a, n
′′
a, w

′′
a)⊕′′f (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b )

= (cb, na ⊕n gn ca ⊕n nb, wb, nwa ⊕nw w′′a ⊕nw nwb,
n′a ⊕ne gne ca ⊕ne n

′
b, w

′
b, n
′′
a ⊕nw gnw ca ⊕nw n′′b , w

′′
b )

Similarly, the calculation of shrink ′′ (a⊗′f b) is as follows.

shrink ′′ ((ca, na, wa, nwa, n
′
a, w

′
a, n
′′
a, w

′′
a)⊗′f (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b ))

= { Definition of ⊗′, shrink ′′ and homomorphism }
(cb, hn nb, hw wa ⊗w gw ca ⊗w hn wb, hnw nwa ⊗nw hnw n′′a ⊗nw hnw nwb,
hne n′b, hsw w′a ⊗sw gsw ca ⊗sw hsw w′b, hnw n′′b , hnw w′′a ⊗nw gnw ca ⊗nw hnw w′′b )

= { Creating a new operator }
shrink ′′ (ca, na, wa, nwa, n

′
a, w

′
a, n
′′
a, w

′′
a ⊗′′ shrink ′′ (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b )

where
(ca, na, wa, nwa, n

′
a, w

′
a, n
′′
a, w

′′
a)⊗′′f (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b )

= (cb, nb, wa ⊗w gw ca ⊗w wb, nwa ⊗nw n′′a ⊗nw nwb,
n′b, w

′
a ⊗sw gsw ca ⊗sw w′b, n

′′
b , w

′′
a ⊗nw gnw ca ⊗nw w′′b )

The final step is fusion of shrink ′′ and ff
′.

shrink ′′(ff
′ c)

= { Definition of shrink ′′ and ff
′ }

(c, hn NIL, hw NIL, hnw NIL, hne NIL, hsw NIL, hnw NIL, hnw NIL)
= { Application of hX to NIL results in NIL }

(c,NIL,NIL,NIL,NIL,NIL,NIL,NIL)
= { Definition of ff

′ }
ff
′ c

Gathering the above results, the optimization is done as follows.



5.3. Nested Reductions: Involving an Infinite Number of Neighbor Elements 135

map shrink ◦ surrounds = proj ◦ scanr(⊕′′r ,⊗′′r) ◦map fr
′′′ ◦ scan(⊕′′f ,⊗′′f ) ◦map ff

′

where
ff
′ a = (a,NIL,NIL,NIL,NIL,NIL,NIL,NIL)

(ca, na, wa, nwa, n
′
a, w

′
a, n
′′
a, w

′′
a)⊕′′f (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b )

= (cb, na ⊕n gn ca ⊕n nb, wb, nwa ⊕nw w′′a ⊕nw nwb,
n′a ⊕ne gne ca ⊕ne n

′
b, w

′
b, n
′′
a ⊕nw gnw ca ⊕nw n′′b , w

′′
b )

(ca, na, wa, nwa, n
′
a, w

′
a, n
′′
a, w

′′
a)⊗′′f (cb, nb, wb, nwb, n

′
b, w

′
b, n
′′
b , w

′′
b )

= (cb, nb, wa ⊗w gw ca ⊗w wb, nwa ⊗nw n′′a ⊗nw nwb,
n′b, w

′
a ⊗sw gsw ca ⊗sw w′b, n

′′
b , w

′′
a ⊗nw gnw ca ⊗nw w′′b )

fr
′′′ (c, n, w, nw, n′, w′, n′′, w′′)
= (gc c, n,NIL,NIL, w,NILnw,NIL,NIL, c, n

′,NIL,NIL, w′)
(ca, na, sa, ea, wa, nea, nwa, sea, swa, c

′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊕′′r (cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

= (ca, na, sa, ea ⊗e ge c′b ⊗e eb, wa,
nea ⊗ne n

′
b ⊗ne neb, nwa, sea ⊗se e

′
b ⊗se seb, swa,

ca, n
′
a, s
′
a, e
′
a ⊗se gse c′b ⊗se e

′
b, w

′
a)

(ca, na, sa, ea, wa, nea, nwa, sea, swa, c
′
a, n
′
a, s
′
a, e
′
a, w

′
a)

⊗′′r (cb, nb, sb, eb, wb, neb, nwb, seb, swb, c
′
b, n
′
b, s
′
b, e
′
b, w

′
b)

= (ca, na, sa, ea ⊗e ge c′b ⊗e eb, wa,
nea ⊗ne n

′
b ⊗ne neb, nwa, sea ⊗se s

′
b ⊗se seb, swa,

ca, n
′
a, s
′
a, e
′
a ⊗se gse c′b ⊗se e

′
b, w

′
a)

The resulting program uses O(n2) operations for a two-dimensional array of
n× n, while the original general form uses O(n4) operations. The parallel complex-
ity of the resulting program is O((n2/P +

√

n2/P logP )T(⊕X ,⊗X)) for P processors,
provided that the computational complexity of ⊕X and ⊗X in the homomorphisms
are T(⊕X ,⊗X).

All the examples shown in the previous section are described in the left hand
side of the theorem. Thus, we can apply this theorem to all of them, and they are
executed in O(n2/P +

√

n2/P logP ) complexity using the skeletons.
It is easily seen that the duplication of elements in the tuple during the deriva-

tion is not necessary if some of the functions hX (X = {n, s, e, w, ne, nw, se, sw})
have the same operators. For example, if hn and hne have the same operator, i.e.
hn = ([gne,⊕ne,⊗n]) and hne = ([gne,⊕ne,⊗ne]) , then we can use hn n instead of
hne n because hn n = hne n when width n = 1 . Thus, in this case we can remove
the duplication of n for hne n in the tuple. Note that ⊗n does not need to be the
same of ⊗ne because it is not used.

Corollary 5.48 (Reduction of the tuple). If the neighboring functions of hX (X ∈
{n, s, e, w, ne, nw, se, sw}) have the same operators, then, the size of the tuples used
in the final program can be reduced. The minimum size is nine.
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Finally, we note that we may perform more optimizations by using the shifting of
the edges instead of butterfly computations for the global computations of scan and
scanr, provided that the operators influence only a fixed number of elements. This
leads to the parallel complexity of O((n2/P +

√

n2/P )T(⊕X ,⊗X)) for P processors.

Optimization Theory of rects ′

We will show a lemma and a theorem that optimizes nested reductions with rects ′.
The theorem is the generalized result of the derivation in Section 4.3.4.

Lemma 5.49 (Map promotion for rects ′). For any function f , the following equation
holds.

map (map f) ◦ rects ′ = rects ′ ◦map f

Proof. This lemma is proved by the following calculation.

map (map f) ◦ rects ′
= { definition of rects ′ }

map (map f) ◦ flatten ◦map (TLs) ◦ BRs
= { promotion of map f through flatten }

flatten ◦map (map (map f)) ◦map (TLs) ◦ BRs
= { map-map fusion }

flatten ◦map (map (map f) ◦ TLs) ◦ BRs
= { map promotion through TLs }

flatten ◦map (TLs ◦map f) ◦ BRs
= { the inverse of map-map fusion, and map promotion through BRs }

flatten ◦map TLs ◦ BRs ◦map f
= { definition of rects ′ }

rects ′ ◦map f

Theorem 5.50. For any associative, commutative binary operators ⊕ and ⊗ with
identities such that ⊗ distributes over ⊕, the following equation holds.

reduce (⊕,⊕) ◦map (reduce (⊗,⊗)) ◦ rects ′ = π1 ◦ ([
i11

1
f ′′′i ,

i11

1
⊙′′i ,

i11

1
⊖′′i ])

Here, functions f ′′′i and the operators ⊙′′i and ⊖′′i are those given by generalizing the
operators ↑ and + in the derivation of Section 4.3.4 to ⊕ and ⊗.

Proof. The proof is given by generalizing the operators ↑ and + in the derivation of
Section 4.3.4 to ⊕ and ⊗.
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5.4 Related Work

Optimization of Skeleton Programs Involving Neighbor Elements

One of the simplest fusion optimizations on lists so far uses a general form called
cataJ [MKI+04]. This cataJ is actually a list homomorphism that has a function
applied to each element of the input list, and an associative binary operator used to
perform reduction on elements. Thus, cataJ can describe any computation written
as composition of any number of map and at most one reduce (a skeleton to perform
reduction) at the last. In this sense, cataJ is a normal form of skeleton programs of
such compositions.

Hu et al. [HIT02] proposed a general fusion optimization using a general form
called accumulate and a set of fusion rules. The accumulate can describe skeleton
scan′, which calculates an accumulation of the input list with an associative binary
operator, as well as map and reduce. So, it can be a normal form of skeleton pro-
grams described with compositions of these skeletons. Although accumulate can
describe also shift≫ and shift≪, it causes some overheads due to lack of consideration
of elements on edges. Main overheads are as follows: (1) extensions of elements
for uniform manipulation by the associative binary operator, and (2) logarithmic
steps of inter-processor communications for general implementation of accumula-
tion. Thus, we need to consider a specific fusion optimization, i.e. a normal form,
fusion rules and efficient implementation.

Our proposed normal form extends these fusions optimizations with considera-
tion of elements on edges introduced by shift≫ and shift≪. The normal form separates
computation of elements on breaks from that of center part, so that it does not in-
troduce the overheads that accumulate causes.

Grelck et al. [GS06] proposed an optimization based on fusion of a general skele-
ton called WITH-loop. Since their WITH-loop are based on index accessing, their
method can deal with shifting operation such as shift≫ and shift≪. Also, their fusion
can handle nesting use of skeletons. However, skeletons that perform accumulation
or reduction, in which a region of elements required in computation of an element
varies, cannot be described with WITH-loop. Our skeletons can handle such com-
putation owing to the homomorphism-based design.

Generalized scan (gen scan) proposed by Fischer et al. [FPS01] can perform accu-
mulation that involves neighbor elements. We can describe shifting operations such
as shift≫ and shift≪ with their gen scan. We think program that perform accumula-
tion after combinations of map, zip, shift≫ and shift≪ can be described by gen scan.
However, since the condition for parallel implementation of gen scan is very compli-
cated, formalization of fusion rules of gen scan is very difficult. Our skeletons are
easier to build fusion rules owing to their uniform design based on homomorphism.
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Maximum Marking Problem

Maximum marking problem is one of optimization problems on sequences. The ob-
jective of maximum marking problem is to find a marking of the input sequence
that gives the maximum weight sum. We can produce many instances of maximum
marking problem by changing the rule of marking on the input sequence. For exam-
ple, maximum prefix sum problem , maximum suffix sum problem, and maximum
segment sum problem are instances of maximum marking problem.

Derivation of efficient sequential programs for maximum marking problems was
studied by Sasano et al. [SHTO00,SHT01] and Bird [Bir01]. They showed systematic
construction of efficient sequential programs when rules of marking are given as
recursive functions of a certain class. Since marking of a prefix/suffix/segment
is given as a recursive function of the class, an efficient sequential program for
maximum prefix/suffix/segment problem is obtained systematically by their results.

Longest Segment Problems

The objective of longest segment problems is to find the longest segment that sat-
isfies a given predicate. Derivation of efficient sequential programs for longest seg-
ment problems were studied by Zatema [Zan92], Jeuring [Jeu93] and Zhao [Zha02].
Zatema [Zan92] and Jeuring [Jeu93] showed derivation of efficient sequential pro-
grams for various predicates. Zhao [Zha02] studied derivation of efficient sequential
programs for predicates constructed as a combination of primitive predicates. She
applied it for data mining to make a querying system that supports efficient querying
of combined predicates.

Nested Reductions on Two-dimensional Arrays

SKiPPER [SG02] is a skeleton-based parallel programming environment for real-
time image processing. It has skeletons specialized for image processing, while we
use general skeletons on two-dimensional arrays. Thus, a program developed with
SKiPPER may be faster than our skeleton programs in the domain of image pro-
cessing. Our skeletons deal with wider range of problems, though.



Chapter 6

Implementation of Skeletons and
Optimizations

In this chapter, we will show parallel implementations of our designed parallel skele-
tons for lists and two-dimensional arrays, simple systems for the fusion optimiza-
tions, and a library with optimization capabilities for nested reductions.

First, we will show to implement the designed skeletons in parallel for distributed
parallel environments. The implementation relies on the parallelism of the homo-
morphism. We will report some experiment results.

Next, we will explain small systems for fusion optimizations designed in Chap-
ters 4 and 5, and show experiment results of the optimizations. 1 Finally, we will
propose a general design of libraries with optimization capabilities based on opti-
mization theorems for domain-specific optimizations, and show implementation of a
library for nested reductions in Fortress [ACH+08], of which principle for optimiza-
tion have been developed in Chapter 5.

6.1 Implementation of Parallel Skeletons on Lists

We briefly view the parallel implementation of the skeletons. In the following, we
consider the simplest case: there are n processors and each of them has one element
of the list of length n .

The implementation of map and zipwith is quite simple as shown in Figure 6.1.
The figure shows that the list [1, 2, 3, 4, 5, 6, 7, 8] is distributively stored in eight
processors P0 through P7. Each element of the resulting list can be calculated
independently on each processor. Thus, the parallel computational time complexity
of map is O(Tf ), where Tf is the complexity of the given function. Similarly, the
complexity of zipwith is O(Tf ).

The calculation of reduce is performed by tree-like computation shown in Figure
6.2. Each stage of the computation is as follows: active processors of the even
number positions receive the values from corresponding active processors of the odd
number positions, then they apply the operator to the values, and finally they store
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Step.1P01 P12 P23 P34 P45 P56 P67 P78dbl2 dbl4 dbl6 dbl8 dbl10 dbl12 dbl14 dbl16
proessors

time
Figure 6.1. Parallel Computation of map dbl [1, 2, 3, 4, 5, 6, 7, 8]

Step.1Step.2Step.3
P01 P12 P23 P34 P45 P56 P67 P78+3 +7 +11 +15+10 +26+36

proessors
time

Figure 6.2. Parallel Computation of reduce (+) [1, 2, 3, 4, 5, 6, 7, 8]

the results for the nest stage. The processors of the odd number positions become
idle after sending their values. One stage of the tree-like computation is done in
O(T⊕) time in parallel, where T⊕ is the complexity of the operator. Repeating the
stages the communication forms a tree, and its height is O(log(n)) . Thus, the
parallel computational time complexity of reduce is O(log(n)T⊕) .

The implementation of scan is similar to that of reduce. It uses the butterfly
computation in stead of the tree-like computation. It is shown in Figure 6.3. Here,
each processor stores the pair of the results of applying reduce to the preceding
elements and to all elements in the segment considered, respectively. Thus, the
parallel computational complexity of scan is O(log(n)T⊕) .
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Step.0Step.1Step.2Step.3Step.4

P01(1,1)pair P12(2,2)pair P23(3,3)pair P34(4,4)pair P45(5,5)pair P56(6,6)pair P67(7,7)pair P78(8,8)pair(1,3)(+;�) (3,3)(+;+) (3,7)(+;�) (7,7)(+;+) (5,11)(+;�) (11,11)(+;+) (7,15)(+;�) (15,15)(+;+)(1,10)(+;�) (3,10)(+;�) (6,10)(+;+) (10,10)(+;+) (5,26)(+;�) (11,26)(+;�) (18,26)(+;+) (26,26)(+;+)(1,36)(+;�) (3,36)(+;�) (6,36)(+;�) (10,36)(+;�) (15,36)(+;+) (21,36)(+;+) (28,36)(+;+) (36,36)(+;+)1�1 3�1 6�1 10�1 15�1 21�1 28�1 36�1

proessors
time

Figure 6.3. Parallel Computation of scan (+) [1, 2, 3, 4, 5, 6, 7, 8]

6.2 Implementation of Parallel Skeletons on Two-

dimensional Arrays

In this section, we will report efficient parallel implementations of parallel skele-
tons for two-dimensional data structures on distributed parallel machines, such as
PC clusters. We will show some experimental results on the parallel skeletons im-
plemented on C++ with MPI [SO98, GLS99], to show programs described with
skeletons can be executed efficiently in parallel. We used MPI to implement lower-
level communication so that we can use skeletons on distributed-memory machines.
Actually, we have alternatives to implement skeletons. For example, we may use
OpenMP [CDK+01, CJvdP07] to provide implementation of skeletons for shared-
memory machines.

First, we will show implementations of map, zipwith, and reduce, which have
simple implementations. Then, we will give implementation of scan, which has more
involved implementation. After that, we will report some experiment results.
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6.2.1 Implementation of Simple Parallel Skeletons

The basic parallel skeletons map, zipwith, and reduce can be efficiently implemented
on distributed memory systems. To illustrate this, we separate computations of a
skeleton into two parts: local computations within a processor and global computa-
tions crossing processors. To this end, we will introduce two functions that represent
distribution and gathering of arrays.

The function dist abstracts distribution of a two-dimensional array to p × q
processors, and is defined as follows.

dist p q x = (flatten ◦map (grpc n) ◦ grpr m) x
where m = ⌈height x/p⌉, n = ⌈width x/q⌉

The function grpr divides the given array into sub-arrays of height k, except for the
last one. It is defined as follows.

grpr k (x−◦ y) = |x|−◦ (grpr k y) while height x = k
grpr k x = |x| when height x ≤ k

Note that our arrays can change its structure so that x of x−◦ y has the height of
k when the height of x−◦ y is greater than k. The function grpc divides the input
array similarly in the alternative direction, and is defined similarly.

The distribution dist p q x means that the two-dimensional array x will be divided
into p × q subarrays (i.e. x is divided into p subarrays in vertical direction, then
each subarray is divided into q subarrays in horizontal direction), and each subarray
is distributed to each processor.

The function gather, the inverse operator of dist, abstracts gathering of two-
dimensional arrays distributed to the processors into a two-dimensional array on
the root processor.

gather = reduce (−◦, − ◦)
Although definitions of these functions may seem complicated, actual operations

are simple as illustrated in Figure 6.4. What is significant here is that these functions
satisfy the relation of id = gather ◦ dist p q.

Now, we will proceed to implementations of skeletons. Here, we will separate
computations of a skeleton into two parts: local computations within a processor
and global computations crossing processors.

For map skeleton, we can separate its computation as follows.

map f = { id = gather ◦ dist p q }
map f ◦ gather ◦ dist p q

= { Definition of gather }
map f ◦ reduce (−◦, − ◦) ◦ dist p q

= { Promotion of map f }
reduce (−◦, − ◦) ◦map (map f) ◦ dist p q

= { Definition of gather }
gather ◦map (map f) ◦ dist p q
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dist p q

gather X00

X01

X10

X11

X20

X21

X00

X01

X10

X11

X20

X21

Figure 6.4. An image of distribution function dist p q and gathering function gather

with p = 2 and q = 3. Each rectangle corresponds to each processor; Xij represents
a subarray.

The last formula indicates that we can compute map f by distributing a two-
dimensional array of the argument to the processors by dist p q, applying map f to
each local array independently on each processor, and finally gathering the results
onto the root processor by gather. Thus, for a two-dimensional array of n × n size
we can compute map f in O(Tfn

2/P ) parallel time, using P = pq processors and
ignoring the distribution and the collection, provided that the function f can be
computed in O(Tf ) time.

The implementation of zipwith is almost the same as map.
For reduce skeleton, we can separate its computation as follows.

reduce (⊕,⊗) = { id = gather ◦ dist p q }
reduce (⊕,⊗) ◦ gather ◦ dist p q

= { Definition of gather }
reduce (⊕,⊗) ◦ reduce (−◦, − ◦) ◦ dist p q

= { Promotion of reduce (⊕,⊗) }
reduce (⊕,⊗) ◦map (reduce (⊕,⊗)) ◦ dist p q

The last formula indicates that we can compute reduce (⊕,⊗) by distributing a
two-dimensional array of the argument to the processors by dist p q, applying
reduce (⊕,⊗) to each local array independently on each processor, and finally re-
ducing the results into the root processor by reduce (⊕,⊗) described in the last
formula. From the property of Eq. (3.2), the last reduction over the results of all
processors can be computed by using tree-like computation in column and row di-
rections respectively like parallel computation of reduction on one-dimensional lists
(see Chapter 2). Thus, for a two-dimensional array of n × n size we can compute
reduce (⊕,⊗) in O(T⊕,⊗(n

2/P + logP )) parallel time, using P = pq processors and
ignoring the distribution, provided that the binary operators ⊕ and ⊗ can be com-
puted in O(T⊕,⊗) time. Note that we can also execute the tree-like computation in
both of column and row directions simultaneously, which results in the same cost.

6.2.2 Implementation of Scan Skeleton

In this section, we will show the parallel implementation of scan, as well as the
implementation of accumulate. We will first give the implementation of scan for
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the simple case that each processor has one element of the two-dimensional array.
Then, we will give the general implementation of scan, in which each processor has
a subarray of the input rather than a single element. We will first show the general
implementation of accumulate using the simple case implementation of scan, and
then instantiate it for scan.

To formalize the simple case implementation of scan, we first extend the dis-
tributable homomorphism [Gor96] on lists to that on two-dimensional arrays. The
distributable homomorphism on lists is a special case of homomorphism, and can be
used as the basis of parallel implementation of scan on lists. The distributable ho-
momorphism on two-dimensional arrays is also a special case of the homomorphism,
as defined below.

DH2 (⊞,⊞′,⊠,⊠′) (x−◦ y) = let x′ = DH2 (⊞,⊞′,⊠,⊠′) x
y′ = DH2 (⊞,⊞′,⊠,⊠′) y

in zipwith (⊞) x′ y′−◦ zipwith (⊞′) x′ y′

DH2 (⊞,⊞′,⊠,⊠′) (x − ◦ y) = let x′ = DH2 (⊞,⊞′,⊠,⊠′) x
y′ = DH2 (⊞,⊞′,⊠,⊠′) y

in zipwith (⊠) x′ y′ − ◦ zipwith (⊠′) x′ y′

DH2 (⊞,⊞′,⊠,⊠′) |a| = |a|
It is easily seen that the distributable homomorphism DH2 (⊞,⊞

′,⊠,⊠′) is executed
in parallel by the two-dimensional version of the butterfly computation as shown in
Figure 6.5. It is also clear that its computational complexity is O(T log(n)) for an
n× n array, where T is the complexity of the operators.

Then, we give the theorem that shows the skeleton scan can be described in
terms of the distributable homomorphism; the skeleton scan can be implemented
using the butterfly computation of the distributable homomorphism.

Theorem 6.1 (Implementation of scan by distributable homomorphism). The skele-
ton scan is described in terms of distributable homomorphism as follows.

scan (⊕,⊗) = map π1 ◦ DH2 (⊞,⊞′,⊠,⊠′) ◦map p4
where
(nwa, na, wa, ca)⊞ (nwb, nb, wb, cb) = (nwa, na, wa ⊕ wb, ca ⊕ cb)
(nwa, na, wa, ca)⊞

′ (nwb, nb, wb, cb) = (wa ⊕ nwb, ca ⊕ nb, wa ⊕ wb, ca ⊕ cb)
(nwa, na, wa, ca)⊠ (nwb, nb, wb, cb) = (nwa, na ⊗ nb, wa, ca ⊗ cb)
(nwa, na, wa, ca)⊠

′ (nwb, nb, wb, cb) = (na ⊗ nwb, na ⊗ nb, ca ⊗ wb, ca ⊗ cb)
p4 a = (a, a, a, a)

Proof. The theorem is proved by induction on the structure of two-dimensional
arrays. The base case is proved as follows.

scan (⊕,⊗) |a|
= { Definition of scan }
|a|

= { Definition of π1, p4, map and DH2 }
(map π1 ◦ DH2 (⊞,⊞′,⊠,⊠′) ◦map p4) |a|
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The inductive case for−◦ is proved as follows.

scan (⊕,⊗) (x1−◦ x2)
= { Definition of scan }

scan (⊕,⊗) x1−◦mapr (zipwith (⊕) (bottom (scan (⊕,⊗) x1))) (scan (⊕,⊗) x2)
= { Hypothesis of induction }

(map π1 ◦ DH2 (⊞,⊞′,⊠,⊠′) ◦map p4) x1
−◦mapr (zipwith (⊕) (bottom (scan (⊕,⊗) x1)))

((map π1 ◦ DH2 (⊞,⊞′,⊠,⊠′) ◦map p4) x2)
= { The property shown below, and function composition }

map π1 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1))
−◦ zipwith (⊕) (map π3 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)))

(map π1 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)))
= { Extracting the same terms using ‘where’ }

map π1 x
′
1−◦ zipwith (⊕) (map π3 x

′
1) (map π1 x

′
2)

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

=

{
π1 ((nwa, na, wa, ca)⊞

′ (nwb, nb, wb, cb))
= wa ⊕ nwb = π3 (nwa, na, wa, ca)⊕ π1 (nwb, nb, wb, cb)

}

map π1 x
′
1−◦map π1 (zipwith (⊞′) x′1 x

′
2)

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

=

{
π1 ((nwa, na, wa, ca)⊞ (nwb, nb, wb, cb))
= nwa = π1 (nwa, na, wa, ca)

}

map π1 (zipwith (⊞) x′1 x
′
2)−◦map π1 (zipwith (⊞′) x′1 x

′
2)

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Definition of map }
map π1 (zipwith (⊞) x′1 x

′
2−◦ zipwith (⊞′) x′1 x

′
2)

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Definition of DH2 and map }
map π1 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 (x1−◦ y1)))

To complete the proof, we have to show the following property.

mapr (zipwith (⊕) (bottom (scan (⊕,⊗) x)))
= zipwith (⊕) (map π3 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 x)))

It is proved by three properties: (1) if all rows of z are the same, then the equation

zipwith (⊕) z y = mapr (zipwith (bottom z)) y

holds, (2) all rows of map π3 (DH2 (⊞,⊞′,⊠,⊠′) y) are the same, and (3) the
following equation holds.

bottom (scan (⊕,⊗) x) = bottom (map π3 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 x)))
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The first one is obvious since each row of zipwith (⊕) z y is equal to the result
of application of zipwith (⊕) (bottom z) to the corresponding row of y.

The second one is proved by induction as follows. The base case is obvious. The
inductive case for−◦ is as follows.

map π3 (DH2 (⊞,⊞′,⊠,⊠′) (y1−◦ y2))
= { Definition of DH2 and map }

map π3 (zipwith (⊞) y′1 y
′
2)−◦map π3 (zipwith (⊞′) y′1 y

′
2)

where y′1 = DH2 (⊞,⊞′,⊠,⊠′) y1
y′2 = DH2 (⊞,⊞′,⊠,⊠′) y2

= { Definition of ⊞ and ⊞′, promotion of map }
zipwith (⊕) (map π3 y

′
1) (map π3 y

′
2)−◦ zipwith (⊕) (map π3 y

′
1) (map π3 y

′
2)

where y′1 = DH2 (⊞,⊞′,⊠,⊠′) y1
y′2 = DH2 (⊞,⊞′,⊠,⊠′) y2

By hypothesis of induction, all rows of the final equation are the same. The inductive
case for − ◦ is as follows.

map π3 (DH2 (⊞,⊞′,⊠,⊠′) (y1 − ◦ y2))
= { Definition of DH2 and map }

map π3 (zipwith (⊠) y′1 y
′
2) − ◦ map π3 (zipwith (⊠′) y′1 y

′
2)

where y′1 = DH2 (⊞,⊞′,⊠,⊠′) y1
y′2 = DH2 (⊞,⊞′,⊠,⊠′) y2

= { Definition of ⊠ and ⊠′, promotion of map }
map π3 y

′
1 − ◦ zipwith (⊗) (map π3 y

′
1) (map π3 y

′
2)

where y′1 = DH2 (⊞,⊞′,⊠,⊠′) y1
y′2 = DH2 (⊞,⊞′,⊠,⊠′) y2

By hypothesis of induction, all rows of the final equation are the same. Similarly,
we can prove that all columns of map π2 (DH2 (⊞,⊞′,⊠,⊠′) y) are the same, and
that all elements of map π4 (DH2 (⊞,⊞′,⊠,⊠′) y) are the same.

The third property is proved by induction. The base case is obvious. The
inductive case for−◦ as follows.

bottom (scan (⊕,⊗) (x1−◦ x2))
= { Definition of scan and bottom }

bottom (mapr (zipwith (⊕) (bottom (scan (⊕,⊗) x1))) (scan (⊕,⊗) x2))
= { Promotion of bottom through mapr }

mapr (zipwith (⊕) (bottom (scan (⊕,⊗) x1))) (bottom (scan (⊕,⊗) x2))
= { Application of mapr f to a row vector is application of f }

zipwith (⊕) (bottom (scan (⊕,⊗) x1)) (bottom (scan (⊕,⊗) x2)
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= { Hypothesis of induction }
zipwith (⊕) (bottom (map π3 x

′
1)) (bottom (map π3 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Promotion of zipwith }
bottom (zipwith (⊕) (map π3 x

′
1) (map π3 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Definition of ⊞′, and promotion of zipwith }
bottom (map π3 (zipwith (⊞′) x′1 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Definition of bottom }
bottom (map π3 (zipwith (⊞) x′1 x

′
2)−◦map π3 (zipwith (⊞′) x′1 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Definition of DH2 and map }
bottom (map π3 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 (x1−◦ x2)))))

The inductive case for − ◦ as follows.

bottom (scan (⊕,⊗) (x1 − ◦ x2))
= { Definition of scan, distribution of bottom }

bottom (scan (⊕,⊗) x1) − ◦

mapc (zipwith (⊕) (bottom (right (scan (⊕,⊗) x1)))) (bottom (scan (⊕,⊗) x2))
= { Hypothesis of induction, property of the fourth element }

bottom (map π3 x
′
1) − ◦

mapc (zipwith (⊕) (bottom (right (map π4 x
′
1)))) (bottom (map π3 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { bottom ◦ right = right ◦ bottom }
bottom (map π3 x

′
1) − ◦

mapc (zipwith (⊕) (right (bottom (map π4 x
′
1)))) (bottom (map π3 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { All elements of map π4 x
′
1 are the same }

bottom (map π3 x
′
1) − ◦ zipwith (⊕) (bottom (map π4 x

′
1)) (bottom (map π3 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Promotion of zipwith }
bottom (map π3 x

′
1) − ◦ bottom (zipwith (⊕) (map π4 x

′
1) (map π3 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)
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= { Distributivity of bottom over − ◦ }
bottom (map π3 x

′
1 − ◦ zipwith (⊕) (map π4 x

′
1) (map π3 x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Definition of ⊠ and ⊠′ }
bottom (map π3 (zipwith (⊠) x′1x

′
2 − ◦ zipwith (⊠′) x′1x

′
2))

where x′1 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x1)
x′2 = DH2 (⊞,⊞′,⊠,⊠′) (map p4 x2)

= { Definition of DH2 and map }
bottom (map π3 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 (x1 − ◦ x2))

The property of the fourth component is as follows.

bottom (right (scan (⊕,⊗) x))
= bottom (right (map π4 (DH2 (⊞,⊞′,⊠,⊠′) (map p4 x))))

This property is obvious because the bottom-right element of scan (⊕,⊗) x is the
result of reduce (⊕,⊗) x, and the fourth component of each element in the result
of DH2 (⊞,⊞′,⊠,⊠′) (map p4 x) is also the result of reduce (⊕,⊗) x .

The inductive case for − ◦ of the theorem is proved similarly.

Since the complexity of distributable homomorphism is O(T log(n)) and that of
the operators is T , this theorem says that scan can be implemented in parallel with
the complexity of O(T log(n)) . This implementation is used in global computation
of the general implementation shown below. Figure 6.5 shows the implementation
of scan by distributable homomorphism, where the number of steps is O(log(n)) .

Now, we will develop the general implementation, i.e., the segmented implemen-
tation of accumulate and scan, in which each processor has one subarray of the input
two-dimensional array rather than a single element. First, we will make the gen-
eral implementation of accumulate. Then, we will instantiate it to make the general
implementation of scan.

Let’s consider to perform the main computation of accumulate independently on
processors. Each processor can perform its local computation on the subarray, when
it has the accumulation parameters necessary for its local computation. Thus, for the
computation of accumulate, we first compute the accumulation parameters for each
processor by global computation, then perform the local computation independently
on each processor, and finally combine the local results by a global reduction.

The segmented parallel implementation of the accumulate is given by the fol-
lowing theorem. Note that we can use the simple case implementation of scan for
the global computation of the accumulation parameters for the local computations.

Theorem 6.2 (Segmented accumulate). The skeleton accumulate is executed seg-
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Step.0
0P00 -1P01 -2P02 -3P032P10 1P11 0P12 -1P134P20 3P21 2P22 1P236P30 5P31 4P32 3P33

p4
Step.1

(0,0,0,0)P00 (-1,-1,-1,-1)P01 (-2,-2,-2,-2)P02 (-3,-3,-3,-3)P03(2,2,2,2)P10 (1,1,1,1)P11 (0,0,0,0)P12 (-1,-1,-1,-1)P13(4,4,4,4)P20 (3,3,3,3)P21 (2,2,2,2)P22 (1,1,1,1)P23(6,6,6,6)P30 (5,5,5,5)P31 (4,4,4,4)P32 (3,3,3,3)P33
(�;�0)

Step.2
��0(0,0,2,2)P00 ��0(-1,-1,0,0)P01 ��0(-2,-2,-2,-2)P02 ��0(-3,-3,-4,-4)P03(2,2,2,2)P10 (0,0,0,0)P11 (-2,-2,-2,-2)P12 (-4,-4,-4,-4)P13��0(4,4,10,10)P20 ��0(3,3,8,8)P21 ��0(2,2,6,6)P22 ��0(1,1,4,4)P23(10,10,10,10)P30 (8,8,8,8)P31 (6,6,6,6)P32 (4,4,4,4)P33

(�;�0)
Step.3

(0,0,2,2)P00 �0� (-1,-1,2,2)P01 (-2,-6,-2,-6)P02 �0� (-5,-5,-6,-6)P03(2,2,2,2)P10 �0� (2,2,2,2)P11 (-2,-6,-2,-6)P12 �0� (-6,-6,-6,-6)P13(4,12,10,18)P20 �0� (7,7,18,18)P21 (2,6,6,10)P22 �0� (3,3,10,10)P23(10,18,10,18)P30 �0� (18,18,18,18)P31 (6,10,6,10)P32 �0� (10,10,10,10)P33
(�;�0)

Step.4
�
�0
(0,0,12,20)P00 �

�0
(-1,-1,20,20)P01 �

�0
(-2,-6,4,4)P02 �

�0
(-5,-5,4,4)P03�

�0
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Figure 6.5. Parallel Computation of scan (+,+) by Distributable Homomorphism

mentally in parallel as follows.

[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x (e, u, v)
= reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x e) (zip xs (zip3 es us vs)))
where
xs = dist p q x
dus = dist 1 q u
dvs = dist p 1 v
z = (||e|| −◦ dus)−◦ (dvs − ◦ fxs)
fxs = map (map f) xs
us = dropc 1 (taker p (scan (zipwith (⊕),≫) (map (reducec (⊕)) z)))
vs = dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z)))
es = taker p (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z)))

Proof. The theorem is proved by induction on division of the input two-dimensional
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array. The base case (p = q = 1) is proved as follows.

RHS 1 1 x (e, u, v)
= { The right hand side }

reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x e) (zip xs (zip
3
es us vs)))

where xs = dist 1 1 x
dus = dist 1 1 u
dvs = dist 1 1 v
z = (||e|| −◦ dus)−◦ (dvs − ◦ fxs)
qxs = map (map f) xs
us = dropc 1 (taker 1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z)))
vs = dropr 1 (takec 1 (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z)))
es = taker 1 (takec 1 (scan (⊕,⊗) (map (reduce (⊕,⊗)) z)))

= { Definition of dist }
reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x e) (zip |x| (zip

3
es us vs)))

where z = (||e|| −◦ |u|)−◦ (|v| −◦ |map f x|)
us = dropc 1 (taker 1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z)))
vs = dropr 1 (takec 1 (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z)))
es = taker 1 (takec 1 (scan (⊕,⊗) (map (reduce (⊕,⊗)) z)))

= { Definition of scan, takec , taker , dropc and dropr }
reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x e) (zip |x| (zip

3
es us vs)))

where us = |u|, vs = |v|, es = |e|
= { Definition of zip and map }

reduce (⊕′,⊗′) |[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x (e, u, v)|
= { Definition of reduce }

[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x (e, u, v)
= { The left hand side }

LHS x (e, u, v)

The inductive case for p = p1 + p2 (i.e. x = x1−◦ x2 and v = v1−◦ v2) is proved as
follows.

RHS (p1 + p2) q (x1−◦ x2) (e, u, v1−◦ v2)
= { The right hand side }

reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x e) (zip xs (zip
3
es us vs)))

where xs = dist (p1 + p2) q (x1−◦ x2)
dus = dist 1 q u
dvs = dist (p1 + p2) 1 (v1−◦ v2)
z = (||e|| −◦ dus)−◦ (dvs − ◦ fxs)
qxs = map (map f) xs
us = dropc 1 (taker (p1 + p2) (scan (zipwith (⊕),≫) (map (reducec (⊕)) z)))
vs = dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z)))
es = taker (p1 + p2) (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z)))

= { Definition of dist and , and introducing new variables }
reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x e) (zip (xs1−◦ xs2) (zip3 es us vs)))

where xs1 = dist p1 1 x1, xs2 = dist p2 1 x2

dus = dist 1 q u
dvs1 = dist p1 1 v1, dvs2 = dist p2 1 v2
z1 = (||e|| −◦ dus)−◦ (dvs1 − ◦ fxs1), z′

2
= (dvs2 − ◦ fxs2)

qxs
1
= map (map f) xs1, qxs

2
= map (map f) xs2

us = dropc 1 (taker (p1 + p2) (scan (zipwith (⊕),≫) (map (reducec (⊕)) (z1−◦z′2))))
vs = dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) (z1−◦ z′2))))
es = taker (p1 + p2) (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) (z1−◦ z′2))))
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= { Properties shown below }
reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x e)

(zip (xs1−◦ xs2) (zip3 (es1−◦ es2) (us1−◦ us2) (vs1−◦ vs2))))
where
e2 = e⊕ reduce (⊕,⊗) v1
u2 = zipwith (⊕) u (reducec(⊕) (map f x1))
xs1 = dist p1 1 x1, xs2 = dist p2 1 x2

dus = dist 1 q u
dus2 = dist 1 q u2

dvs1 = dist p1 1 v1, dvs2 = dist p2 1 v2
z1 = (||e|| −◦ dus)−◦ (dvs1 − ◦ fxs1), z2 = (||e2|| −◦ dus2)−◦ (dvs2 − ◦ fxs2)
qxs

1
= map (map f) xs1, qxs

2
= map (map f) xs2

us1 = dropc 1 (taker p1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)))
vs1 = dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z1)))
es1 = taker p1 (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z1)))
us2 = dropc 1 (taker p2 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z2)))
vs2 = dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z2)))
es2 = taker p2 (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z2)))

= { Definition of reduce, map, and zip }
reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]]x e) (zip xs1 (zip3 es1 us1 vs1)))
⊕ reduce (⊕′,⊗′) (map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]]x e) (zip xs2 (zip3 es2 us2 vs2)))
where
e2 = e⊕ reduce (⊕,⊗) v1
u2 = zipwith (⊕) u (reducec (⊕) (map f x1))
xs1 = dist p1 1 x1, xs2 = dist p2 1 x2

dus = dist 1 q u, dus2 = dist 1 q u2

dvs1 = dist p1 1 v1, dvs2 = dist p2 1 v2
z1 = (||e|| −◦ dus)−◦ (dvs1 − ◦ fxs1), z2 = (||e2|| −◦ dus2)−◦ (dvs2 − ◦ fxs2)
qxs

1
= map (map f) xs1, qxs

2
= map (map f) xs2

us1 = dropc 1 (taker p1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)))
vs1 = dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z1)))
es1 = taker p1 (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z1)))
us2 = dropc 1 (taker p2 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z2)))
vs2 = dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z2)))
es2 = taker p2 (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z2)))

= { The right hand side }
RHS p1 q x1 (e, u, v1)⊕ RHS p2 q x2 (e, u, v2)

where
e2 = e⊕ reduce (⊕,⊗) v1
u2 = zipwith (⊕) u (reducec (⊕) (map f x1))

= { Hypothesis of induction }
[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x1 (e, u, v1)⊕ [[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x2 (e2, u2, v2)

where
e2 = e⊕ reduce (⊕,⊗) v1
u2 = zipwith (⊕) u (reducec (⊕) (map f x1))

= { Definition of accumulate }
[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] (x1−◦ x2) (e, u, v1−◦ v2)

= { The left hand side }
LHS (x1−◦ x2) (e, u, v1−◦ v2)



152 6. Implementation of Skeletons and Optimizations

To complete the above proof, we show the following properties.

dropc 1 (taker (p1 + p2) (scan (zipwith (⊕),≫) (map (reducec (⊕)) (z1−◦ z′2))))
= dropc 1 (taker p1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)))
−◦dropc 1 (taker p2 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z2)))

dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) (z1−◦ z′2))))
= dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z1)))
−◦dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z2)))

taker (p1 + p2) (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) (z1−◦ z′2))))
= taker p1 (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z1)))
−◦taker p2 (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z2)))

where
z1 = (||e|| −◦ dus)−◦ (dvs1 − ◦ fxs1), z2 = (||e2|| −◦ dus2)−◦ z′2
e2 = e⊕ reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)
dus2 = zipwith (zipwith (⊕)) dus (reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
))

These properties are proved using the following property (see the last part of proof
of Theorem 3.1 .)

bottom (scan (⊕,⊗) y) = scan (⊕,⊗) (reducec (⊕) y)

The first property is proved as follows.

dropc 1 (taker (p1 + p2) (scan (zipwith (⊕),≫) (map (reducec (⊕)) (z1−◦ z′2))))
= { Definition of scan }

dropc 1 (taker (p1 + p2) (s1−◦mapr (zipwith (zipwith (⊕)) (bottom s1)) s2))
where s1 = scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)

s2 = scan (zipwith (⊕),≫) (map (reducec (⊕)) z′
2
)

= { Definition of taker , dropc and z1 }
dropc 1 (taker p1 s1)
−◦dropc 1 (taker p2 (bottom s1−◦mapr (zipwith (zipwith (⊕)) (bottom s1)) s2))
where s1 = scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)

s2 = scan (zipwith (⊕),≫) (map (reducec (⊕)) z′
2
)

= { The above property, and bottom ◦ bottom = bottom }
dropc 1 (taker p1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)))
−◦dropc 1 (taker p2 (scan (zipwith (⊕),≫) r

−◦mapr (zipwith (zipwith (⊕)) (bottom (scan (zipwith (⊕),≫) r))) s2))
where r = reducec (zipwith (⊕)) (map (reducec (⊕)) z1)

s2 = scan (zipwith (⊕),≫) (map (reducec (⊕)) z′
2
)

= { Definition of scan }
dropc 1 (taker p1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)))
−◦dropc 1 (taker p2 (scan (zipwith (⊕),≫) (r−◦map (reducec (⊕)) z′

2
)))

where r = reducec (zipwith (⊕)) (map (reducec (⊕)) z1)
= { Calculation of r shown below }

dropc 1 (taker p1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)))
−◦dropc 1 (taker p2 (scan (zipwith (⊕),≫) (r−◦map (reducec (⊕)) z′

2
)))

where
r = map (reducec (⊕)) (||e2|| −◦ dus2)
e2 = e⊕ reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)
dus2 = zipwith (zipwith (⊕)) dus (reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
))
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= { Introducing the variable z2 }
dropc 1 (taker p1 (scan (zipwith (⊕),≫) (map (reducec (⊕)) z1)))
−◦dropc 1 (taker p2 (scan (zipwith (⊕),≫) (r−◦map (reducec (⊕)) z2)))
where
z2 = (||e2|| −◦ dus2)−◦ z′2
e2 = e⊕ reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)
dus2 = zipwith (zipwith (⊕)) dus (reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
))

The calculation of r is as follows.

reducec (zipwith (⊕)) (map (reducec (⊕)) z1)
= { Definition of z1 }

reducec (zipwith (⊕)) (map (reducec (⊕)) ((||e|| −◦ dus)−◦ (dvs1 − ◦ fxs1)))
= { Definition of reducec and map }

(zipwith (zipwith (⊕)) ||e|| (reducec (zipwith (⊕)) (map (reducec (⊕)) dvs1)))

− ◦(zipwith (zipwith (⊕)) (map (reducec (⊕)) dus)
(reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
)))

=

{
If width x = 1, then reducec (⊕) x = | reduce (⊕,⊗) x|,
reduce (zipwith (⊕,⊗)) ◦map | · | = | · | ◦ reduce (⊕,⊗)

}

(zipwith (zipwith (⊕)) ||e|| || reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)||)

− ◦(zipwith (zipwith (⊕)) (map (reducec (⊕)) dus)
(reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
)))

= { If the height of each element of x is one, then map (reducec (⊕)) x = x }
(zipwith (zipwith (⊕)) ||e|| || reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)||)

− ◦map (reducec (⊕)) (zipwith (zipwith (⊕)) dus
(reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
)))

= { Definition of zipwith, introducing the variable dus2 }
||e⊕ reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)|| −◦ map (reducec (⊕)) dus2

where
dus2 = zipwith (zipwith (⊕)) dus (reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
))

= { Definition of map and reducec, introducing the variable e2 }
map (reducec (⊕)) (||e2|| −◦ dus2)

where
e2 = e⊕ reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)
dus2 = zipwith (zipwith (⊕)) dus (reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
))

Now, the proof of the first property is completed.

The second property is proved similarly. Assuming that height y1 = 1, the key
calculation is as follows.

dropr 1 (scan (≫, zipwith (⊗)) (y1−◦ y2))
= { Definition of scan }

dropr 1 (scan (≫, zipwith (⊗)) y1
−◦mapr (zipwith (≫) (scan (≫, zipwith (⊗)) y1)) (scan (≫, zipwith (⊗)) y2))

= { Drop the top row }
mapr (zipwith (≫) (scan (≫, zipwith (⊗)) y1)) (scan (≫, zipwith (⊗)) y2))

= { zipwith (≫) x y = y }
scan (≫, zipwith (⊗)) y2
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The third property is proved similarly. The key calculation is as follows.

reducec (⊕) (map (reduce (⊕,⊗)) z1)
= { Definition of z1 }

reducec (⊕) (map (reduce (⊕,⊗)) ((||e|| −◦ dus)−◦ (dvs1 − ◦ fxs1)))
= { Definition of reducec and map }

(zipwith (⊕) |e| (reducec (⊕) (map (reduce (⊕,⊗)) dvs1))))

− ◦(zipwith (⊕) (map (reduce (⊕,⊗)) dus) (reducec (⊕) (map (reduce (⊕,⊗)) fxs
1
)))

= { If width x = 1, then reducec (⊕) x = | reduce (⊕,⊗) x| }
(zipwith (⊕) |e| | reduce (⊕,⊗) (map (reducec (⊕)) dvs1)|)

− ◦(zipwith (⊕) (map (reduce (⊕,⊗)) dus) (reducec (⊕) (map (reduce (⊕,⊗)) fxs
1
)))

= { Definition of zipwith, moving the application of ⊗ to the front }
|e⊕ reduce (⊕,⊗) (map (reducec (⊕)) dvs1)|

−◦map (reduce (⊕,⊗)) (zipwith (zipwith(⊕)) dus
(reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
)))

= { Introducing e2 and dus2, definition of map and reduce }
map (reduce (⊕,⊗)) (||e2|| −◦ dus2)

where
e2 = e⊕ reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)
dus2 = zipwith (zipwith (⊕)) dus (reducec (zipwith (⊕)) (map (reducec (⊕)) fxs

1
))

Finally, the following calculation completes the proof.

zipwith (zipwith (⊕)) dus (reducec (zipwith (⊕)) (map (reducec (⊕)) fxs
1
))

= { Definition of dus and fxs
1
}

zipwith (zipwith (⊕)) (dist 1 q u)
(reducec (zipwith (⊕)) (map (reducec (⊕)) (map (map f) (dist p q x))))

= { Moving dist to the front }
dist 1 q (zipwith (⊕) u (reducec (⊕) (map f x)))

e⊕ reduce (⊕,⊗) (map (reduce (⊕,⊗)) dvs1)
= { Definition of dvs1 and (reverse) promotion of reduce (⊕,⊗) }

e⊕ reduce (⊕,⊗) (reduce (−◦, − ◦) (dist p q v1))
= { gather = reduce (−◦, − ◦) and gather ◦ dist p q = id }

e⊕ reduce (⊕,⊗) v1

The inductive case for q = q1 + q2 is proved similarly.

The computation of us , vs and es is done using the previous implementation
of scan by distributable homomorphism, in which the complexity of the operators
is O(

√

n/(pq)) for an n × n array and pq processors. Thus, its computational

complexity is O(
√

n/(pq) log(pq)) . The computation of reduce (⊕′,⊗′) is O(log(pq))
using tree-like computation, and that of map (λ(x, e).[[(⊕′,⊗′, f ′), (⊕,⊗, f)]] x e) is
O(n2/(pq)) since it is performed independently on each processor. Thus, total
complexity is O(n2/P +

√

n2/P log(P )) for an n× n array and P = pq processors.
Note that we can compute us , vs , and es simultaneously with a single scan by
tupling them, since they have the same structure of computation.

How, we can obtain the segmented implementation of scan using the theorem.

Corollary 6.3 (Segmented scan). The skeleton scan is executed segmentally in
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parallel as follows.

scan (⊕,⊗)
= gather (map (λ(x, e).[[(−◦, − ◦, λx e.e), (⊕,⊗, f)]] x e) (zip xs (zip3 es us vs)))
where
xs = dist p q x
dus = dist 1 q (|ı| −◦ · · · −◦ |ı|)
dvs = dist p 1 (|ı|−◦ · · ·−◦ |ı|)
z = (||e|| −◦ dus)−◦ (dvs − ◦ fxs)
fxs = map (map f) xs
us = dropc 1 (taker p (scan (zipwith (⊕),≫) (map (reducec (⊕)) z)))
vs = dropr 1 (takec q (scan (≫, zipwith (⊗)) (map (reducer (⊗)) z)))
es = taker p (takec q (scan (⊕,⊗) (map (reduce (⊕,⊗)) z)))
where ı⊕ a = a⊕ ı = a, ı⊗ a = a⊗ ı = a

The computational complexity of scan is O(n2/P +
√

n2/P log(P )) for an n× n
array and P processors, which is equal to that argued in previous section. Note that
[[(−◦, − ◦, λx e.e), (⊕,⊗, f)]] is scan except that it takes the initial values (accumulation
parameters.)

6.2.3 Refined Implementation for Nested Use of Skeletons

The ordinary implementation for tree-like computation of the skeleton reduce uses
only one processor to each operator. Precisely saying, one processor receives the
value of the other processor and applies the operator to the pair of its value and the
receive value by only itself, while the other processor becomes idle after sending its
value.

This becomes a problem when the complexity is not small, although it is not a
problem when the computational complexity of the operator is small (e.g., O(1) or
O(log(n)) for the input of size n). For example, the program mrs for the maximum
rectangle sum problem in Section 4.3.3 has a reduce with operators of which com-
plexity is O(n3) for the input matrix of n× n. Its parallel computational complexity
for the ordinary implementation using P processors is as follows:

T (n× n, P ) = n3 + T (n× n/2, P/2) = O(n3) .

Since the complexity of the last operator is big and dominant, the parallel complexity
does not depend on the number of processors P . Thus, this program is not efficiently
executed in parallel even if the number of processors becomes large. Generally, this
problem arises when the complexity of the operator is equal or bigger than O(n).
This situation occurs when the operator contains skeletons, i.e., when the program
contains nested uses of skeletons.

The main cause of this problem is that the implementation uses only one pro-
cessor for each operator in the tree-like computation; some processors remain idle
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during the computation. If we can use these idle processors for the computation of
reduction operators, we may improve the efficiency.

We will use those idle processors to solve this problem. In the refined imple-
mentation, a set of available processors is attached to each operator of the reduce

skeleton so that these processors are used for the parallel execution of the skeletons
of the operator. Furthermore, since map is often used to describe explicit paral-
lelization of independent computations, we also give refined implementation of map

having a set of processors.
In the following, f

P
means performing the computation of f to a distributed

matrix using the set of processors P in parallel, and f
P

means to distribute the

argument matrix and perform the computation f using P in parallel.
We formalize the computation of skeletons with the attached set of processors.

An outermost skeleton marked by ·
P
distributes the argument matrix among the set

of processors P (|P | ≥ p × q) and does local computation in parallel by using map

marked by ·P . The reduce performs global tree-like computation marked by ·P .
map f

P
= gather ◦map (map f)

P
◦ dist p q

reduce (⊕,⊗)
P

= reduce (⊕,⊗)
P
◦map (reduce (⊕,⊗))

P
◦ dist p q

The map marked by ·P divides the set of available processors P into two sets of P1

and P2 in the cases of−◦ and − ◦, and performs the computation of f in parallel on P
in the base case. The division of P is done so that the ratio of the sizes of P1 and
P2 is the same of that of x and y.

map f
P
|a| =

∣
∣
∣f

P
a
∣
∣
∣

map f
P
(x−◦ y) = map f

P1

x −◦ map f
P2

y

map f
P
(x − ◦ y) = map f

P1

x − ◦ map f
P2

y

The reduce marked by ·P for the global computation divides the set of available
processors P into two sets of P1 and P2 in the cases of −◦ and − ◦, and performs
the computation of each operator in parallel on P that is the set of all available
processors for the operator. The division of P is done so that the ratio of the sizes
of P1 and P2 is the same of that of x and y.

reduce (⊕,⊗)
P
|a| = a

reduce (⊕,⊗)
P
(x−◦ y) = reduce (⊕,⊗)

P1

x ⊕
P
reduce (⊕,⊗)

P2

y

reduce (⊕,⊗)
P
(x − ◦ y) = reduce (⊕,⊗)

P1

x ⊗
P
reduce (⊕,⊗)

P2

y

This refined implementation enables parallel execution of the last operator in the
tree-like computation. It can reduce the dominant complexity, and thus, improve
the parallel complexity of the program.

Using this refined implementation, computational complexity of mrs using P
processors is as follows:

T (n× n, P ) = n3/P + log(P ) + T (n× n/2, P/2) = O(n3/P + log(P )) .
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The parallel complexity of the last operator is inversely proportional to P because
the computation of the operator is performed in parallel among P processors. Thus,
this program is efficiently executed in parallel as the number of processors becomes
large.

6.2.4 Experiment Results

We implemented the parallel skeletons as a library 1 with C++ and MPI, and did
our experiments on a small-scale PC cluster of sixteen uniform PCs connected with
Gigabit Ethernet. Each PC has a CPU of Pentium4 3.0GHz (Hyper Threading
ON) and 1GB memory, with Linux 2.6.8 for the OS, gcc 3.4 for the compiler, and
mpich 1.2.6 for the MPI.

Figures 6.6 through 6.8 show speedups of the following parallel programs de-
scribed with the parallel skeletons.

Frobenius Norm
fnorm = reduce (+,+) ◦map square ,

Matrix Multiplication
mm (composition of skeletons; see Section 3.2.2).

Maximum Rectangle Sum
mrs (derived program written by skeletons; see Section 4.3.3).

Image Filter
ifilter = map f ◦ scanr (⊕′r,⊗′r) ◦map fr ◦ scan(⊕′f ,⊗′f ) ◦map ff
(optimized program written by composition of skeletons); see Section 5.3.2.

The inputs are a 4000× 4000 matrix for fnorm, , 1000× 1000 matrices for mm and
mrs , and a 2000 × 2000 matrix for ifilter . The computational times of the above
programs on one processor are 0.21s, 2.06s, 14.1s, and 116.8s respectively.

The result shows programs described with skeletons can be executed efficiently
in parallel, and proves the success of our framework. Both of the simple program
(fnorm) and the more complicated program (ifilter) achieve linear speedups by the
parallel implementation of the skeletons. The speedup of matrix multiplication is
super-linear. This can happen in large matrix operations where the matrix on a
single processor is large with respect to the cache size. It is reasonable that the
super-linear speedup is achieved here. Two lines in Figure 6.8 are the results of mrs
using the simple implementation (labeled ‘mrs’) and the refined implementation
for nested use of skeletons (labeled ‘mrs(refined)’), respectively. The refined one
gives us a good speedup nearly proportional to the number of processors for 16
processors, while the speedup of the simple one is reaching the limit soon. This
result indicates that even if a program written by the skeletons contains nested use
of skeletons, we can execute it efficiently in parallel when we successfully execute

1This implementation is included in the skeleton library ‘SkeTo’. It is available at the web page
http://www.ipl.t.u-tokyo.ac.jp/sketo/
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the inner skeletons in parallel. However, even for the refined implementation of mrs ,
the speedup is expected to reach the limit earlier than other examples, because it
uses heavy operators and needs to transfer larger data structures among processors.

Finally, we list a part of the C++ code of mm written with the skeleton library
to give a concrete impression of the conciseness our library provides. Figure 6.10
shows the C++ code of the function mm that implements mm. The function takes
three distributed matrices (i.e., two-dimensional arrays): Z2 to store the result,
and X2 and Y2 for the input. Two functions all rows and all cols implements
the corresponding functions in mm with provided skeletons. The results of these
functions are stored in two arrays A2 and B2. These arrays are then supplied to the
provided skeleton zipwith, which is an implementation of skeleton zipwith. Here,
users do not need to be conscious of its parallel implementation; what they need
to do is simply to supply two distributed matrices and the function object to be
applied to elements.

6.3 Implementation of Fusion Optimizations

In this section, we will briefly report our simple implementations of fusion opti-
mizations: the domain-independent fusion optimization in Section 4.1.3, and the
domain-specific fusion optimization in Section 5.1. We will also report some exper-
iment results to show the effect of optimizations.

6.3.1 A Simple System for Domain-Independent Fusion Op-
timization

SkeTo [MIEH06] library is equipped with the domain-independent fusion optimiza-
tion shown in Section 4.1.3. We will briefly review its mechanism.

The optimization mechanism consists of three components: the user-interface
database, the transformation engine, and the implementation database. Taking a
C++ program with skeletons, the transformation system first converts the skeletons
into their structured forms (i.e., accumulate and buildJ in Section 4.1.3) by applying
rules given as meta-programs in the user-interface database. Then, the transfor-
mation engine manipulates and fuses the structured forms with the shortcut fusion
rules (Theorem 4.4 and its variants). Finally, the system generates optimized skele-
ton compositions from the fused structured forms by the rules in the implementation
database.

The optimization system is implemented in OpenC++, a meta language for
manipulating C++ programs.

For example, the following two lines of code to apply two functions f and g to
the list x

y = x->map(f);

z = y->map(g);
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Figure 6.6. Speedup of F-norm
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6.3. Implementation of Fusion Optimizations 161template <lass C, lass A, lass B>void mm(dist_matrix<C> &Z2, onst dist_matrix<A> &X2, onst dist_matrix<B> &Y2){ dist_matrix < matrix < int > > *A2;dist_matrix < matrix < int > > *B2;A2 = all_rows2(X2);B2 = all_ols2(Y2);m_skeletons::zipwith(Iprod<C>(), *A2, *B2, Z2);delete B2;delete A2;}
Figure 6.10. C++ code of matrix multiplication described with parallel skele-
tons. dist matrix is the type of distributed tow-dimensional arrays. Two func-
tions all rows and all cols are also implemented with skeletons. The function
m skeleton::zipwith is the implementation of zipwith skeleton.

is converted by OpenC++ into the following parse tree , which is a nested list of
tokens.

[[sqs = [[subs -> map] ( [sq] )]] ;]

[[sqs = [[subs -> map] ( [sq] )]] ;]

Then, those parse trees are transformed into structured forms by rules given as
meta-programs in the user-interface database as follows.

[‘buildJ‘ y x [[var c] [var s [f]] [var e]] ;]

[‘buildJ‘ z y [[var c] [var s [g]] [var e]] ;]

Here, the two maps are structured by the buildJ. The transformation engine then
transform the structured forms into the following one structured form, by applying
the fusion rules.

[‘buildJ‘ z y [[var c] [var s [g] [f]] [var e]] ;]

Finally, the system transform the structured form back into the following invocation
of the skeleton.

y = x->map(compose(g, f));

Here, compose is a function to compose two functions. The system has a map to
transform structured forms into skeletons.

6.3.2 A Simple System for Domain-Specific Fusion Opti-
mization

The system reads a skeleton program written with skeleton library SkeTo [MIEH06],
and generates an optimized C++ code of the program. The optimized code is written
with direct use of MPI or skeletons in SkeTo library.

The optimization flow of the system is as follow.
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Phase. 1 Parsing the input program to extract skeleton compositions.

Phase. 2 Building normal forms from the extracted skeleton compositions by domain-
specific fusions.

Phase. 3 Generating optimized codes of efficient implementations to replace the
skeleton compositions in the input program.

We will explain the flow with the domain-specific fusion developed in Section 5.2.
In the first phase, the system reads C++ program written with skeletons pro-

vided by skeleton library SkeTo. Figure 6.11 shows an example C++ program that
implements the running example next in Section 5.2 as the C++ function nextZW,
which uses zipwith instead of the composition of map and zip.

Then, the system extracts skeleton compositions of specific patterns from the
C++ program. For the program in Figure 6.11, it extracts an instance of Program,
i.e., the following composition.

map add (
zip (map add (zip (map c 2x (shift≫ b0 (shift≫ b1 u))) (map c 1x (shift≫ b1 u))))

(map add (zip (map c0x u) (map c1x (shift≪ b2 u)))))

When there are more than one patterns of compositions (i.e., domains of computa-
tions), the system tests those patterns one by one. The unit of extracting skeleton
compositions is a function declaration in the input program.

In the second phase, the system transforms the extracted compositions into nor-
mal forms by using fusions specific to the compositions patterns. For example, the
above extracted composition is transformed into the following normal form by the
fusion rules defined in Section 5.2 (the fusion rules can work well as Haskell functions
to carry out the transformation).

[[ [ add(add(c 2x(b0), c 1x(b1)), add(c0x(u
−→
[0]), c1x(u

−→
[1]))),

add(add(c 2x(b1), c 1x(u
−→
[0])), add(c0x(u

−→
[1]), c1x(u

−→
[2])))],

add(add(c 2x(u≪2), c 1x(u≪1)), add(c0x(u), c1x(u≫1))),

[add(add(c 2x(u
←−
[2]), c 1x(u

←−
[1])), add(c0x(u

←−
[0]), c1x(b2)))] ]]

The the last phase, the system generates C++ code of efficient implementations
of built normal forms, to replace the skeleton compositions with these implementa-
tions. The replacement code is written with direct use of MPI or skeletons provided
by SkeTo library. Figure 6.12 shows the generated code to replace the function
nextZW of Figure 6.11, which implements the efficient implementation of the above
normal form discussed in Section 5.2.

Finally, the system outputs the input C++ program of which skeleton composi-
tions are replaced with the generated code.
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1 // ...
2 // definitions of parameter functions
3 struct times t : public skeleton::unary function<double,double>{
4 const double c;
5 times t(double c) : c(c) {}

6 double operator()(double r) const{

7 return c * r;
8 }

9 } c 1x(c 1), c0x(c0);
10 struct ADD : public skeleton::binary function<double,double,double>{
11 double operator()(double x, double y) const {

12 return x+y;
13 }

14 }add;
15
16 //start of skeleton program
17 dist list<double> *nextZW(dist list<double> *u) {

18 dist list<double> *sl1 = list skeletons::shiftl(b2,u);
19 dist list<double> *sr1 = list skeletons::shiftr(b1,u);
20 dist list<double> *sr2 = list skeletons::shiftr(b0,sr1);
21
22 dist list<double> *msl1 = list skeletons::map(c1x,sl1);
23 dist list<double> *m0 = list skeletons::map(c0x,u);
24 dist list<double> *msr1 = list skeletons::map(c 1x,sr1);
25 dist list<double> *msr2 = list skeletons::map(c 2x,sr2);
26
27 dist list<double> *sz1 = list skeletons::zipwith(add, msr2, msr1);
28 dist list<double> *sz2 = list skeletons::zipwith(add, m0, msl1);
29 dist list<double> *res = list skeletons::zipwith(add, sz1, sz2);
30
31 delete sz2;
32 delete sz1;
33 delete msr2;
34 delete msr1;
35 delete m0;
36 delete msl1;
37 delete sr2;
38 delete sr1;
39 delete sl1;
40 return res;
41 }

42 //end of skeleton program
43
44 // the main function
45 int SketoMain(int argc, char **argv) {

46 // ...
47 for(int t=0;t<count;t++){
48 tmp = nextZW(ary);
49 delete ary;
50 ary = tmp;
51 }

52 // ...
53 return 0;

54 }

Figure 6.11. The input source code written with skeletons in SkeTo library (some
parts are omitted). The function nextZW corresponds to the running example next
in Section 5.2.
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1 dist list<double> *nextZW(dist list<double> *u) {

2 dist list<double> *res = new dist list<double>(n);
3 enum { TAG1, TAG2 };

4 const int L = 1;

5 const int R = 2;

6 const int rank = skeleton::rank;
7 const int procs = skeleton::procs;
8 const int localn = u->get local size(rank);
9 double *uData = &(u->at(0));

10 double *resData = &(res->at(0));
11 double *sbufl = new double[L];
12 double *rbufl = new double[R];
13 double *sbufr = new double[R];
14 double *rbufr = new double[L];
15 MPI Request reqs1, reqr1, reqs2, reqr2;
16 if(rank!=0){
17 for(int i = 0; i < L; i++) { sbufl[i] = uData[i]; }

18 MPI Isend(sbufl,L,MPI DOUBLE,rank-1,TAG2,MPI COMM WORLD,&reqs1);
19 MPI Irecv(rbufl,R,MPI DOUBLE,rank-1,TAG1,MPI COMM WORLD,&reqr1);
20 }

21 if(rank!=procs-1){
22 for(int i = 0; i < R; i++) { sbufr[i] = uData[localn-R+i]; }

23 MPI Isend(sbufr,R,MPI DOUBLE,rank+1,TAG1,MPI COMM WORLD,&reqs2);
24 MPI Irecv(rbufr,L,MPI DOUBLE,rank+1,TAG2,MPI COMM WORLD,&reqr2);
25 }

26
27 if(rank==0) {

28 resData[0] = add(add(c 2x(b0), c 1x(b1)), add(c0x(uData[0]), c1x(uData[1])));
29 resData[1] = add(add(c 2x(b1), c 1x(uData[0])), add(c0x(uData[1]), c1x(uData[2])));
30 }

31 if(rank==procs-1) {

32 resData[localn-1-0] = add(add(c 2x(uData[localn-1-2]), c 1x(uData[localn-1-1])), add(c0x
(uData[localn-1-0]), c1x(b2)));

33 }

34
35 for(int i = R; i < localn-L; i++) {

36 resData[i] = add(add(c 2x(uData[i-2]), c 1x(uData[i-1])), add(c0x(uData[i+0]), c1x(
uData[i+1])));

37 }

38 if(rank!=0){ MPI Wait(&reqr1,MPI STATUS IGNORE); }

39 if(rank!=procs-1){ MPI Wait(&reqr2,MPI STATUS IGNORE); }

40 if(rank!=0) {

41 resData[0] = add(add(c 2x(rbufl[0]), c 1x(rbufl[1])), add(c0x(uData[0]), c1x(uData[1])))
;

42 resData[1] = add(add(c 2x(rbufl[1]), c 1x(uData[0])), add(c0x(uData[1]), c1x(uData[2])
));

43 }

44 if(rank!=procs-1) {

45 resData[localn-1-0] = add(add(c 2x(uData[localn-1-2]), c 1x(uData[localn-1-1])), add(c0x
(uData[localn-1-0]), c1x(rbufr[0])));

46 }

47 delete [] sbufl; delete [] rbufl; delete [] sbufr; delete [] rbufr;
48 return res;
49 }

Figure 6.12. The output optimized code to replace the function nextZW of Fig-
ure 6.11.
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6.3.3 Experiment Results

We will show experiment results of the domain-specific fusion developed in Sec-
tion 5.2 to evaluate its effectiveness.

We measured running times of naively-composed skeleton programs and their
optimized programs for the examples next and solveTS in Section 5.2 as well as the
following simpler example upwind .

upwind u = zipwith (+) (shift≫ 0 (map (c1×) u)) (map (c0×) u)

Here, each element of the output is computed from its corresponding element in
the input u and its left element. We used a PC cluster where each of the nodes
connected with Gigabit Ethernet has a CPU of Intel R© Xeon R©2.80GHz and 2GB
memory, with Linux 2.4.21, GCC 4.1.1, and mpich 1.2.7.

Result of upwind

Table 6.1 lists measured running times and speedups, and Figure 6.13 shows the
speedups. Running time is of applying the function 10 times to an input list of
40,000,000 elements. A speedup is a ratio of running time of a parallel program to
running time of a sequential program of a single for-loop.

The program upwind f optimized by the domain-independent fusion achieves
two times faster running time than the original skeleton program upwind. The
program upwind dsf optimized with the domain-specific optimization achieves ten
times faster running time than the original skeleton program, and the same running
time as a sequential program on one processor. These improvements were gained by
elimination of redundant intermediate data and communications.

Precisely saying, the domain-independent optimization reduces the number of
traversals on lists from four in the naive program to two in the optimized program.
Actually, the optimized program contains only one skeleton accumulate. However,
the skeleton essentially traverses the list twice. Therefore, the reduction of the
number of traversals is limited to two but not one. Note that the computation
(multiplications of constants and additions) are far cheaper than memory access in
this example program.

On the other hand, the domain-specific optimization reduces the number of
traversals on lists from four to one, because it dispatches implementation specific to
the computation pattern. Therefore, the domain-specific optimization achieves four
times faster running time.

Also, the optimized program achieves good speedups against the number of pro-
cessors. The drop of speedup is expected to be suppressed when the computation is
carried out on larger input.

These results guarantee effectiveness of the proposed optimization.
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Table 6.1. Running times and speedups of upwind (naive skeleton program), up-
wind f (optimized by fusion), and upwind dsf (optimized by DS fusion) against
the number of processors. A speedup is one with respect to a sequential program.

#processors 1 2 4 8 16 32 64
upwind time (s) 32.97 16.14 8.13 3.95 1.97 1.05 0.73

speedup 0.26 0.53 1.05 2.15 4.31 8.14 11.66
upwind f time (s) 10.13 5.07 2.60 1.46 0.65 0.47 0.35

speedup 0.84 1.68 3.27 5.85 13.00 17.94 24.03
upwind dsf time (s) 8.51 4.14 2.08 1.04 0.51 0.28 0.17

speedup 1.00 2.06 4.09 8.21 16.57 30.04 49.98
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Figure 6.13. Speedups of upwind (naive skeleton program), upwind f (optimized
by fusion), and upwind dsf (optimized by DS fusion) with respect to the number
of processors.
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r[0] = c_2*b0 + c_1*b1 + c0*u[0] + c1*u[1];
r[1] = c_2*b1 + c_1*u[0] + c0*u[1] + c1*u[2];
for(int i = 2; i < n-1; i++) {

r[i] = c_2*u[i-2] + c_1*u[i-1] + c0*u[i] + c1*u[i+1];
}
r[n-1] = c_2*u[n-3] + c_1*u[n-2] + c0*u[n-1] + c1*b2;

Figure 6.15. A sequential program of next

Result of next

Table 6.2 lists measured running times and speedups, and Figure 6.14 shows the
speedups. Running time is of applying the function 100 times to an input list of
10,000,000 elements. A speedup is a ratio of running time of a parallel program to
running time of a sequential program (shown in Figure 6.15). It is worth noting
that the domain-independent fusion does not work for this example, and thus we
have no result for the domain-independent fusion here.

The optimized program next dsf achieves ten times faster running time than the
original skeleton program next, and the same running time as a sequential program
on one processor. This improvement was gained by elimination of redundant inter-
mediate data and communications. Precisely saying, the optimization reduces the
number of traversals on lists from ten in the naive program (see Figure 6.11) to one
in the optimized program. Therefore, the optimized program runs ten times faster
than the naive program. Note that the computation (multiplications of constants
and additions) are far cheaper than memory access in this example program.

Also, the optimized program achieves good speedups against the number of pro-
cessors. The speedup drops earlier than the previous example upwind, because
the optimized implementation of next performs communication twice, and thus its
overhead appears earlier, while the optimized program of upwind performs com-
munication once. The drop of speedup can be suppressed when the computation is
carried out on larger input.

These results guarantee effectiveness of the proposed optimization.

Result of solveTS

Table 6.3 lists measured running times and speedups, and Figure 6.16 shows the
speedups. Running time is of applying the function 10 times to an input list of
1,000,000 elements. A speedup is a ratio of running time of a parallel program to
running time of a sequential program

The optimized program solveTS dsf achieves about 20% faster running time
than the original skeleton program solveTS. This improvement was gained by elim-
ination of redundant intermediate data and communications, although its effective-
ness is small because both programs have the same heavy computation of scan.

Also, the optimized program achieves good speedups against the number of pro-
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Table 6.2. Running times and speedups of next (naive skeleton program) and
next dsf (optimized by DS fusion) against the number of processors. A speedup is
one with respect to a sequential program.

#processors 1 2 4 8 16 32 64
next time (s) 210.25 100.84 48.12 24.41 13.31 6.52 3.50

speedup 0.09 0.20 0.41 0.81 1.49 3.04 5.67
next dsf time (s) 19.86 9.64 4.93 2.44 1.26 0.70 0.47

speedup 1.00 2.06 4.03 8.14 15.79 28.26 42.22
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Figure 6.14. Speedups of next (naive skeleton program) and next dsf (optimized
by DS fusion) with respect to the number of processors.
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Table 6.3. Running times and speedups of solveTS (naive skeleton program) and
solveTS dsf (optimized by DS fusion) against the number of processors. A speedup
is one with respect to a sequential program.

#processors 1 2 4 8 16 32 64
solveTS time (s) 117.03 69.92 40.54 20.21 10.14 4.97 2.79

speedup 0.53 0.89 1.54 3.08 6.13 12.52 22.28
solveTS dsf time (s) 62.20 60.81 30.47 15.26 7.66 3.91 2.18

speedup 1.00 1.02 2.04 4.08 8.12 15.90 28.49
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Figure 6.16. Speedups of solveTS (naive skeleton program) and solveTS dsf (op-
timized by DS fusion) with respect to the number of processors.

cessors, although the maximum speedup is limited to half of the number of pro-
cessors. This is because the parallel implementation of scan essentially doubles its
computation with respect to that of sequential implementation.

6.4 Libraries with Optimization Capabilities

In this section, we will propose design and implementation of libraries with optimiza-
tion capabilities, which can optimize naively written structured computations with
knowledge of optimization theorems for skeleton programs. These libraries bring
easy use of the optimization theorems, to solve the problem of difficulty in applying
those theorems by hand, such as misjudgment of conditions, misimplementation of
complicated efficient implementation, and so on.

The library consists of two collections: one collection of the core objects to
abstract various data structures, and the other collection of theorems to optimize
programs using the core objects. Each core object also carries out the whole com-



170 6. Implementation of Skeletons and Optimizations

putation of the specific pattern on the structure, which is a quite natural design
to apply our theories in which the structures of the data and the computation are
closely related to each other. The core objects exploit the knowledge of theorems
in the other collection, to dispatch suitable efficient implementations to programs
naively written with the core objects.

We will show our idea with a development of a concrete library for nested reduc-
tions in new programming language Fortress [ACH+08]. The target computation of
the library is those discussed in Section 5.3.

In the example library, we will provide a collection of objects representing nested
data structures discussed in Section 5.3. For example, a code fragment to compute
the maximum prefix sum is written with comprehensions as follows.

BIG MAX 〈
∑
〈 x | x← px 〉 | px ← prefixes xs 〉

Here, all prefixes are abstracted by the core object prefixes xs , in which the function
prefixes takes the input list xs and returns the core object. This core object can
be simply seen as a nested list of prefixes. The inner comprehension 〈 x | x ← px 〉
with the reduction

∑
computes a sum of each prefix px , and the outer 〈 . . . | px ←

prefixes xs 〉 with the reduction BIG MAX (the maximum) takes the maximum of sums.
The example library is equipped with the theorems in Section 5.3, to optimize

those programs using the core objects. For example, the library applies Theo-
rem 5.33 to the above program to execute it with the provided efficient implemen-
tation, since the program satisfies the application condition of the theorem.

Equipped with the collection of theorems, the library enables us to exploit knowl-
edge of theorems easily, without applying theorems by hand. This clearly reduces
human errors such as misjudgment of conditions, misimplementation of complicated
efficient implementation, and so on.

In the rest of this section, we will first introduce the general design of libraries
with optimization capabilities. Then, to proceed to the example library for nested
reductions in Fortress, we will introduce the programming language Fortress. After
that, we will show design and implementation of the library for nested reductions.

6.4.1 General Design of Growable Optimizing Libraries

Figure 6.17 shows the general design of our growable optimizing libraries.
The point of the design of libraries is the two collections: One collection of the

core objects is provided to describe naive structured programs of specific patterns,
and the other collection of theorems is given to provide efficient implementations
under specific conditions on parameters of the computations.

The core objects represent the target data structures of computations, and per-
form the whole computations of specific patterns on the data structures. The core
object should handle the whole computation completely. This is a requirement
for exploiting knowledge of our theories because the computation structures in our
theories are very closely related to the structures of target data.
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Collection of the core objects
for naive description of programs

coreObj1.compute(f1, . . . , fk)

coreObj2.compute(f1, . . . , fk)

coreObj3.compute(f1, . . . , fk)

coreObj4.compute(f1, . . . , fk)

...

Growing

Collection of theorems
for optimization of programs

Thm1: (Condition1, EfficientImpl1)

Thm2: (Condition2, EfficientImpl2)

Thm3: (Condition3, EfficientImpl3)

Thm4: (Condition4, EfficientImpl4)

Thm5: (Condition5, EfficientImpl5)

...

Growing

interface(f1, . . . , fk)

for i = 1, 2, . . .

if Conditioni(f1, . . . , fk) then

return EfficientImpli(f1, . . . , fk)

Growable Optimizing Library

A user program

...
r = coreObj4(⊕,⊗, p, . . . , f)

...

×

◦

Figure 6.17. Two-collection design of growable optimizing libraries. Libraries op-
timize programs (specifications) naively written with the core objects. Each core
object carries out the optimization in the interface method, checking application con-
ditions of theorems and executing the computation with efficient implementations
provided by applicable theorems. This structure enables easy use of knowledge of
theorems.
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For example, a list may be the core object, since it is a data structure, and
it can handle the computation (homomorphism); the computation structure of the
homomorphism on the list is completely specified by the list. Actually, this idea is
used in Fortress to provide simple computation pattern on data structures.

The computation on the core objects is carried out within an interface method
compute(f1, . . . , fk), which has some parameters of the computation such as func-
tions, operators, predicates, and so on. For example, the homomorphism on a list
has two parameters.

The core objects optimize the computations on their representing data structures,
exploiting the collection of theorems. They dispatch suitable efficient implementa-
tions to the computations on the data structures themselves, when they find some
theorems are applicable to the computation with the given parameters.

The requirement that the core objects can handle the whole computation on
them is necessary to optimize the whole computation flexibly. The core objects
optimize the execution of the computation by replacing the naive algorithm to com-
pute the result with efficient implementation. Thus, they have to handle the whole
computation.

The check on application conditions of theorems can be easily implemented by
the check on types. Since our theories formalize computation patterns as higher
order functions, the application conditions of theorems are usually described with
whether the parameters have specific mathematical properties or not. Also, the
test of possession of mathematical properties can be easily implemented by check-
ing types, once we annotate the parameter objects with specific types to represent
mathematical properties. Therefore, the check on application conditions can be
implemented by the check on types.

Finally, it is worth noting that the library grows up by extending the collections.
The expressiveness is grown by enriching the collection of core objects. The power
of optimization is grown by enriching the collection of theorems.

This is our proposing design of growable optimizing libraries.

6.4.2 Parallel Programming Language Fortress

In this section we will review new parallel programming language Fortress [ACH+08].
The review starts at overviews, and proceeds to various expressions and the type
system of Fortress.

Brief Overview of Fortress

Fortress is a new ambitious programming language being developed by Program-
ming Language Research Group of Sun Microsystems Laboratories and its open
source community. Some interesting features are its default support for easy use
of parallelism, its philosophy of a growing language, and its programming notation
closer to math.
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Fortress is a parallel language with high productivity for various parallel ma-
chines, supporting parallelism at several levels. The highest level support is expres-
sions evaluated in parallel. The next level includes loops, reductions, and compre-
hensions. The lower level provides parallel code regions, and explicit multithreading.
In this thesis, we only use the high level support for parallelism.

Fortress is a growing language, i.e., grows over time, since we cannot build a
big language all at once. Observing this growing language philosophy, Fortress puts
as many language features as possible into libraries rather than the compiler, and
supports extensible syntax and many kinds of operators for DSLs. We also observe
the philosophy, and make a library with optimization capabilities.

Fortress supports notation closer to math. For example, it supports juxtaposition
notation so that we can write 2x to double x instead of 2 * x in the usual languages.
Also, we can write a function application without parenthesis, e.g., sin x instead of
sin(x). Fortress’ notation supports also many mathematical operators, and various
comprehensions. Therefore, we can write

∑〈x2 | x ← xs〉 to take a square sum of
xs , in which

∑
is an operator to take summation (a reduction with +) and 〈. . .〉 is

a comprehension notation.

Expressions Evaluated in Parallel

Let’s consider the following tuple expression, in which f is a function and eis are
certain expressions.

(f(e1, e2), e3 + e4)

Fortress may evaluate elements of a tuple in parallel. Thus, sub expressions f(e1, e2)
and e3 + e4 may be evaluated in parallel. In addition, arguments of a function (e1
and e2), and operands of an operator (e3 and e4) may be evaluated in parallel,
respectively.

Expressions to Structure Programs

Let’s see some small programs to compute Fibonacci numbers.
The first program defines a recursive function fib.

fib(n : Z32) : Z32 = if n ≤ 1 then 1
else (f1, f2) = (fib(n− 1), fib(n− 2))

f1 + f2
end

The function fib takes the input n of type Z32 (32-bit integer), and returns the
result (the nth Fibonacci number) of type Z32. The type of the input argument
follows the name n of the input after a colon, and the type of the result follows the
parenthesis enclosing the input arguments. The function body is the ‘if’ expression,
which returns the last expression of the ‘then’ part when the condition holds, and
otherwise returns the last expression of the ‘else’ part. Thus, the body return 1
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when n ≤ 1, and otherwise returns the sum f1 + f2, i.e., the sum of the results of
the recursive calls fib(n − 1) and fib(n − 2) that are bound to variables f1 and f2
by the binding operator =. Types of f1 and f2 are not written in the code, and will
be inferred by Fortress. It is worth noting that an ‘if’ expression without the ‘else’
part is allowed.

The following program defines function fibL to compute Fibonacci numbers with
linear cost. Its argument type and result type are omitted here, and will be inferred
automatically by Fortress.

fibL(n) = do (∗ defines a local function sub ∗)
sub(m) = if m ≤ 1 then (1, 1)

else (f1, f2) = sub(m− 1)
(f1 + f2, f1)

end (∗ end of function sub ∗)
(fst , snd) = sub(n)
fst

end

The function body is the ‘do’ expression that executes its enclosing expressions
sequentially, and returns the result of the last expression. Therefore, the function
fibL returns the value of the variable fst , which is computed by the preceding expres-
sion that calls the local function sub computing the pair (fib(n), fib(n− 1)). Fortress
allows declaration of local functions like sub. A comment in Fortress programs is
enclosed with (* and *).

We can also use a ‘while’ expression to compute Fibonacci numbers by a loop as
follows.

fibLW (n) = do

(f1, f2,m) : (Z32,Z32,Z32) := (1, 1, 1)
while m < n do (f1, f2,m) := (f1 + f2, f1,m+ 1) end
f1

end

A ‘while’ expression evaluates its body (enclosed with do-end) repeatedly while the
condition holds. The pair (f1, f2) holds (fib(m), fib(m − 1)) during the iteration
in this program. The variable declaration uses operator := to assign their initial
values, which indicates that the variables are assignable (updatable). Since we have
to use the operator := to update such assignable variables in Fortress, the body uses
the operator to update the variables with their new values, instead of the binding
operator =.

We can break an iteration of ‘while’ by an ‘exit-with’ expression. The following
program code replaces the ‘while’ loop followed by the expression f1 in the previous
program.
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label whileLoop
while true do

if m = n then exit whileLoop with f1 end
(f1, f2,m) := (f1 + f2, f1,m+ 1)

end

end whileLoop

The ‘exit-with’ expression exits from a block labeled by the ‘label’ expression, and
returns the expression following the ‘with’ as the result of the labeled block. Thus,
the ‘exit-with’ expression of the above program exits the whileLoop block with the
value of f1.

Expressions to Branch on Type

The next program prints the type of the given argument, using ‘typecase’ expression
that branches according to types.

printType(x) = typecase x of

Z32⇒ println(“x is an integer.”)
String⇒ println(“x is a string.”)
else⇒ println(“x is unknown type.”)

end

The ‘typecase’ branches to the first case of which specified type matches with
the type of the given argument x . Therefore, the program prints “x is an integer.”
when x has type Z32, and it prints “x is a string.” when x is a string. Otherwise
“x is unknown type.” is printed. Of course, the dispatching based on types can also
be implemented with overloaded functions.

Fortress Type System

The types in Fortress consists of traits and objects. Traits are like interfaces in
Java [GJSB05], but may contain code. Objects may have methods and fields, while
traits may not have fields. In that sense, objects are the actual data. The name of
a trait or an object may be used as a type. Traits and objects may extend multiple
traits, but may not extend any objects. In other words, objects are the leaves of
the hierarchy. Traits, objects, and methods may be parameterized. The parameters
may be types or compile-time constants.

Figure 6.18 shows some Fortress codes of traits and objects, of which function-
alities will be explained in Section 6.4.3. Trait Generator is parameterized with
type E (enclosed with J and K), and has methods generate and reduce. The method
generate is also parameterized with another type R, and takes two arguments of
types ReductionJRK (defined below) and E → R. Here, E → R is the type of
functions from E to R, and functions are first-class in Fortress. The other method
reduce has its body definition. Trait Reduction is parameterized with type L, and
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trait GeneratorJEK
generateJRK(red : ReductionJRK, body :E → R):R
reduce(r: ReductionJEK) :E = generateJEK(r, fn (e :E)⇒ e)

end

trait ReductionJLK
empty():L
join(a:L, b:L):L

end

trait SomeCommutativeReduction end

object SumReduction
extends {ReductionJNumberK, SomeCommutativeReduction }

empty(): Number = 0
join(a: Number, b: Number): Number = a+ b

end

Figure 6.18. Traits for generators and reductions.
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Figure 6.19. Generators abstract parallel computation where a set of elements (data)
is generated and then consumed by a reduction. A generator forms an abstract
computational tree. The associativity of reduction operators plays an important
role in balancing the parallel computation.

has two (abstract) methods without their bodies. Object SumReduction extends
two traits Reduction with the type parameter L = Number (a trait for numbers)
and SomeCommutativeReduction. It also defines bodies of the abstract methods.

6.4.3 Generators for Reductions in Fortress

This section reviews the concept of generators in Fortress, which is the most impor-
tant idea of high-level parallelism in Fortress. We will also shows its implementation
briefly.

Basically, generators are objects that can generate a set of elements, and perform
parallel reduction on them. In other words, generators can be seen as the combina-
tion of list data structures and list homomorphism on them. Thus, our developed
theories can be applicable for them.
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Later in the next section, we will extend generators to handle nested computation
on nested structures.

Concept of Generators in Fortress

Generators in Fortress [ACH+08] are objects to abstract high-level parallel compu-
tation, in which a set of elements are generated and then consumed by a reduction
like a summation. A generator is a container holding a set of elements, and can be
seen as a higher order function in the sense that it provides a pattern of computa-
tion with function parameters. Actually, the computation pattern is the same as
list homomorphism in Chapter 2.

Figure 6.19 shows how a generator abstracts such parallel computation. A
generator forms an abstract tree structure for parallel computation, in which el-
ements are held in leaves connected by internal nodes. For example, generator
〈1, 2, 3, 4, 5, 6, 7, 8〉 holds eight elements on the tree as shown in the top left of Fig-
ure 6.19, in which elements 1, 2, 3, and 4 are held in the left sub-tree and the others
are in the right sub-tree.

It is easily seen that the abstract structure is the same as the structure of join
lists. Also, the structure is the same as the computation structure of homomorphism.

A generator receives the pair of an associative binary operator and a function
through the interface method generate, to perform the computation along with the
abstract tree structure. The abstract tree structure is filled with the operator and
the function, to become a concrete computational tree, in which a leaf becomes an
application of the function to generate a new element, and an internal node is filled
with the binary operator. For example, the top right tree in Figure 6.19 shows one
filled with the pair (⊕, f). The computation performed through generate(⊕, f ) of
generator 〈1, 2, 3, 4, 5, 6, 7, 8〉 results in f 1⊕ f 2⊕ f 3⊕ f 4⊕ f 5⊕ f 6⊕ f 7⊕ f 8,
which is the same as homomorphism.

Changing the operator and the function to be supplied, we can compute various
results from a generator. For example, the sum of squares of the elements are
obtained by the pair of addition operator + and function f(x) = x2. Also, a product
of all elements are computed by the product operator and the identity function.

A generator executes the computation in parallel. For example, two sub-trees in
the computational tree shown in the top right of Figure 6.19 are executed in par-
allel, because their computations are completely independent. This parallelization
corresponds to putting parenthesis as (((f 1 ⊕ f 2) ⊕ f 3) ⊕ f 4) ⊕ (((f 5 ⊕ f 6) ⊕
f 7)⊕ f 8).

The parallelism of the computation is completely controlled by a generator, in
which the associativity of operators plays an important role in balancing the parallel
computation. For example, the abstract tree in the top left of Figure 6.19 can be
changed to the tree in bottom left of the figure, so that the grandchild sub-trees can
be evaluated in parallel evenly. The computation on the changed abstract tree shown
in the bottom right results in the same value as the previous computation of the
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generateJRK(red : ReductionJRK, body :E → R):R =
if s ≤ 0 then red .empty()
else loop′(lo :E, hi :E):R =

if lo = hi then body(lo)
else (∗ Identify power-of-2 boundary in region, split there ∗)

split = partitionL((lo BITXOR hi) + 1)
mid = hi BITAND (BITNOT(split − 1))
red .join(loop′(lo,mid − 1), loop′(mid , hi))

end

loop′(b, b+ s− 1)
end

Figure 6.20. Simple parallel implementation of the method generate.

top right tree, since the operator has associativity, i.e., (((f 1⊕ f 2)⊕ f 3)⊕ f 4) =
((f 1⊕ f 2)⊕ (f 3⊕ f 4) and so on.

Comprehension notation is provided in Fortress for concise use of generators.
Roughly speaking, the following comprehension with a reduction is equivalent to
the invocation of generate(⊕, f ) on a generator g.

⊕〈f a | a← g〉

Here, the comprehension 〈f a | a← g〉 specifies generation of elements by applying
the function f to each element a held in the generator g, and big operator

⊕
specifies

a reduction with ⊕ on the generated elements.
For example, to take the summation of squares of list 〈1, 2, 3, 4〉, we can use the

following comprehension.

∑〈a2 | a← 〈1, 2, 3, 4〉〉

This comprehension is equivalent to the following skeleton program.

reduce (+) (map (λa.a2) [1, 2, 3, 4])

Comprehensions in Fortress can handle predicates to filter generated elements.
For example,

∑〈a |a←x, a>0〉 results in a sum of positive elements by using pred-
icate a > 0. This is equivalent to skeleton program reduce (+) (filter (λa.a > 0) x).
However, we omit handling of predicates for simplicity, until Section 6.4.5.

Implementation of Generators in Fortress

A generator in Fortress is an object extending trait Generator with the interface
method generate. Its core definition is shown in Figure 6.18. The method generate
takes an associative binary operator red and a function body , to perform the gener-
ation and the reduction.
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Figure 6.21. Computation of a nested reduction by the current generators and by
the GoGs.

An associative binary operator is enclosed in an object extending trait Reduction.
Trait Reduction has method join to provide an associative binary operator, and
method empty to provide the identity of the operator.

For example, the usual addition operator + is enclosed with object SumReduction
shown in Figure 6.18, in which the method join adds two operands by the operator
+, and the method empty returns 0, i.e., the identity of +.

Figure 6.20 shows an example parallel implementation of generate method of
generator (b # s) that produces a sequence of s numbers from b, i.e., b, b+ 1, . . . , b+
s − 1. When s ≤ 0, i.e., the generator produces no elements, the method returns
the identity red .empty(). Otherwise, it forms an abstract binary tree by recursive
calls of the local function loop ′ that performs partial computation on lo, lo + 1, . . .,
hi . In the case of lo = hi , i.e., a leaf of lo, it generates a new element by body(lo).
In the other case, i.e., an internal node, it combines the results loop ′(lo,mid − 1)
and loop ′(mid , hi) of sub-trees by the given associative binary operator red .join.
The results of sub-trees are computed in parallel, since operands are computed in
parallel by default in Fortress. The structure of the abstract computational tree
varies according to the number of elements to be generated. The associativity of the
given operator is necessary to obtain a well-defined result of the computation.

Finally, we briefly mention desugaring of comprehensions in Fortress. Each use
of comprehension is desugared into invocation of the method generate of a generator
by the following desugaring algorithm DS.

DS(⊕〈body | x← g, gs〉)
=g.generate(⊕, fn x⇒ DS(⊕〈body |gs〉))

DS(⊕〈body |〉)=body

For example, the code
∑〈x2 | x← xs〉 to compute a sum of squares is desugared by

the compiler into the following invocation of generate. Here, the reduction operator
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object SumReduction is given by the operator
∑

.

xs .generate(SumReduction, fn x⇒ x2)

6.4.4 Generators-of-generators: the Core of Nested Reduc-
tions

We will introduce the concept of generators-of-generators (GoGs for short) to repre-
sent nested data structures of specific patterns, which is the core objects for nested
reductions. Before introducing GoGs, we will first point out the problem of using
the current simple generators.

Problem of Using the Simple Generators

The requirement for the core objects is that they can handle the whole computation
on them, i.e., the whole computation of nested reductions, so that they can optimize
the whole computation flexibly. They optimize the execution of the computation by
replacing the naive algorithm to compute the result with efficient implementation.
Thus, they have to handle the whole computation.

However, the current generators cannot satisfy the requirement. This is mainly
because they are designed to handle only flat reductions on them. Even though their
generating elements have dependencies on each other, and thus the reductions on
them have the induced dependencies, these dependencies are completely ignored and
the whole computation of nested reductions cannot be handled with one generator.

Consider computing nested reductions on dependent data structures such as
prefixes of a sequence. With the existing generators, nested reductions on prefixes
of generator xs = 〈a, b, c〉 with two operators ⊕ and ⊗ are computed by the following
code.

⊕
〈
⊗
〈 f xs i | i← (0 # s) 〉 | s← (1 # (|xs|)) 〉

Here, |xs| is the size of xs . The top half of Figure 6.21 illustrates the computation,
in which leaves of the big abstract computational tree are (virtually) abstract trees
of prefixes 〈a〉, 〈a, b〉, and 〈a, b, c〉.

The problem is that the outer tree generates the inner abstract trees indepen-
dently in its leaves, and thus inner computations are independently executed in the
leaves, even though the inner trees have the dependency that they are prefixes of
one generator xs .

To solve the problem, we will introduce generators-of-generators, which abstracts
nested data structures.

Generators-of-Generators to Capture the Whole Computation of Nested
Reductions

To solve the problem of the current generators ignoring inner generators, we will
introduce generators-of-generators, which abstracts nested data structures. They
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capture dependencies among generated generators such as prefixes, and abstract
the whole structure of a nested reduction on them. Therefore, we can have a big
chance to perform efficient computation exploiting the dependency and properties
of operators.

GoGs are more-informed generators for efficient computation of nested reductions
of the following form.

⊕〈⊗〈 f y | y ← ys〉 | ys ← gg 〉

Here, gg is a GoG to produce a set of dependent generators (yss). In the rest of
this chapter, we will especially focus on a GoG such that a generated generator is a
subset of a given generator.

The computation of a nested reduction with a GoG is illustrated in the bottom
of Figure 6.21. A GoG is also a generator, and forms a similar nested abstract
computational tree. However, a GoG abstracts the whole structure of a nested
reduction by one object, while the existing generators do by multiple objects (i.e.,
the outer generator and the inner generators).

GoGs have the new interface method generate2 to execute nested reductions with
the given operators, so that they can exploit mathematical properties between the
given operators and the dependencies among inner generators for optimization based
on theorems. The new interface receives two reduction operators at the same time,
while the computation by the existing generators supply these operators separately
to the outer generator and to the inner generators. This point is important, because
GoGs are often required to handle these two operators simultaneously to exploit
knowledge of theorems.

6.4.5 Design and Implementation of the Optimizing GoG
Library

We will implement the growable optimizing library for nested reductions, based on
the general design in Section 6.4.1.

The main features of the library are two folds.

• It provides a set of GoGs so that users can easily write programs for nested
reductions with various patterns of dependencies. As demonstrated later, var-
ious interesting applications can be clearly specified with the GoGs the library
provides.
• It, like other optimization techniques based on simple calculation rules [GLJ93,
OHIT97], implements the optimization lightweightly deep analysis of program
codes and can be implemented as a Fortress library. The simplicity and the
nontrivial improvement are owing to the use of calculation theorems and the
powerful dispatch mechanism of Fortress.

Our optimizing library for nested reductions has been integrated into the current
Fortress interpreter [For08].
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if Conditioni(⊕,⊗, f) then

return EfficientImpli(⊕,⊗, f)

Growable Optimizing Library

A user program

×

◦

Figure 6.22. Two collections form a growable optimizing library. It optimizes spec-
ifications using knowledge of theorems on them.

Figure 6.22 shows the structure of the library, which is an instance of the design
in Section 6.4.1. The core objects in the library are GoGs.

The library supports nested reductions of the following form with various GoG
gg.

⊕〈⊗〈 f y | y ← ys〉 | ys ← gg 〉
The behavior of programs written with our library is as follows. A nested reduc-

tion written a GoG is desugared into an invocation of the interface method generate2
with the given parameters, i.e, two reduction operators and a function applied to
each element. Then, the method generate2 checks whether the given parameters
satisfy the application conditions of theorems stored in the library. Once the condi-
tion of a theorem is found to be satisfied, the computation of the nested reduction
is carried out with the efficient implementation the theorem provides. If no theorem
is available, the nested reduction is carried out with the naive implementation, in
which all dependent generators are actually generated independently and inner re-
ductions on them are performed also independently. This mechanism of dispatching
implementation enables users to exploit knowledge of theorems implicitly.

The optimization mechanism by dispatching needs to check mathematical prop-
erties of operators and functions to utilize calculation theorems. Generally, it is very
difficult to prove a mathematical property at compile-time or, of course, run-time.
Thus, we assume that operators and functions are beforehand annotated about their
specific properties with specific types. The dispatching and checking mechanisms
are explained in Section 6.4.5.

Mechanism of Growable Optimizing Library

We show the details of the implementation of our library, with examples of a GoG
for prefixes.

We will first show the mechanism with the implementation for one-dimensional
data structures, i.e., for lists. After the explanation of the mechanism, we will
show the implementation for two-dimensional arrays, i.e., the implementation for
the bide-tree homomorphism.
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trait Generator2JE K extends {GeneratorJGeneratorJE K K }
getter seed() : GeneratorJE K
generate

2
JR K(q : ReductionJR K, r : ReductionJR K, f : E → R) : R

theoremsJRK() : ListJ((ReductionJR K,ReductionJR K, E → R)→ Boolean,
(ReductionJR K,ReductionJR K, E → R)→ R)K = 〈 〉

naiveImplJR K(q : ReductionJR K, r : ReductionJR K, f : E → R) : R =
generateJRK(q, (fn (x)⇒ x.generateJRK(r, f)))

end

Figure 6.23. Base trait of GoGs

Base Trait of GoGs: Generator2

Figure 6.23 shows the base trait Generator2 of all GoGs. Since a GoG is a generator
producing generators, it extends GeneratorJGeneratorJEKK, although it does not
necessarily actually do the generation.

Since a GoG produces a set of generators that are subsets of a given generator,
trait Generator2 has a getter seed() to hold the given generator. The given generator
is used by efficient implementations to exploit the parallelism in the generator.
Also, it is used by naive implementations to produce the naive nested computation
structure.

The interface method generate2 receives two objects of reduction operators and
a function to be applied to every element, to perform the nested reduction with
the given parameters. It implements the dispatching mechanism to optimize nested
reductions using calculation theorems, which is explained in Section 6.4.5.

Knowledge of theorems on a GoG is stored as the list theorems of pairs of func-
tions. Each pair of the list consists of (1) a function to check the application condi-
tion of a theorem, and (1) a function to execute efficient implementation provided by
the theorem. These functions take the same arguments of the method generate2 , and
return a Boolean value of satisfiability of the condition and the result of the nested
reduction with the given parameters, respectively. The list is empty by default, and
should be enriched by library implementers to utilize knowledge of theorems (see
Section 6.4.5).

Method naiveImpl provides the naive implementation to perform the nested
reduction when no theorems is available. It invokes the method generate with the
outer reduction operator and a function that invokes the method generate of an
inner generated generator with another operator and the function, which is the
naive execution shown in the top half of Figure 6.21.

For example, Figure 6.24 shows the least implementation of a GoG for prefixes,
which corresponds to inits in Section 5.3. The least requirement for defining a GoG
is to implement the getter seed() and the method generate, which is an abstract
method of trait Generator. The object Prefixes receives a generator of which prefixes
are to be generated, and stores it in the getter seed(). The implementation of the
method generate actually produces all prefixes by function prefixesImpl , and then
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object PrefixesJE K(g : GeneratorJE K) extends Generator2JE K
getter seed() : GeneratorJE K = g
generateJR K(r : ReductionJR K, body : GeneratorJE K→ R) : R

= prefixesImplJE K(g).generateJR K(r, body)
end

prefixesImplJE K(x : GeneratorJE K) : GeneratorJGeneratorJE K K
= 〈 〈xi | i← (0 # s) 〉 | s← (1 # (|x|)) 〉

prefixesJEK(g : GeneratorJEK) : PrefixesJEK = PrefixesJEK(g)

Figure 6.24. The least implementation of a GoG for prefixes.

generate
2
JRK(q : ReductionJRK, r : ReductionJRK, f :E → R) :R

= do ths = theoremsJRK()
i : Z32 := 0
label dispatchingLoop

while i < |ths| do
(condition, efficientImpl) = thsi
if (condition(q, r, f)) then

(∗ use efficient implementaion ∗)
exit dispatchingLoop with efficientImpl(q, r, f)

end

i += 1
end

naiveImplJR K(q, r, f)(∗ use naive implementaion ∗)
end dispatchingLoop

end

Figure 6.25. The implementation of the dispatching mechanism.

invokes the method generate of the generated prefixes. This is the required behavior
of the GoG as a Fortress’ generator to produce prefixes.

Function prefixesImpl implements the actual generation of prefixes, in which a
list of prefixes is generated by the comprehension, where 〈xi | i← (0 # s)〉 is the sth
prefix of x . The last function prefixes is a short cut to make a GoG for prefixes of
the given generator.

Dispatching Mechanism in Method generate2

Method generate2 implements the dispatching mechanism to optimize nested reduc-
tions with calculation theorems, which is the most important function of the library.
Figure 6.25 shows implementation of the method, which takes the parameters of the
nested reductions, i.e., two objects q and r of reduction operators and a function f
applied to every element.

The main loop in method generate2 checks each application condition condition
of theorems stored in the list theorems. When the condition of a theorem is satisfied
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trait DistributesOverJEK end
distributesJQ,RK(q : Q, r : R) : Boolean =
typecase (q, r) of

(Q,DistributesOverJQK)⇒ true
else⇒ false

end

Figure 6.26. A trait for annotation about distributivity and a function to check the
distributivity.

object SumReduction
extends {ReductionJNumberK, SomeCommutativeReduction,
DistributesOverJMaxReductionK,DistributesOverJMinReductionK }

empty(): Number = 0
join(a: Number, b: Number): Number = a+ b

end

Figure 6.27. An annotated reduction object for summation.

by the given parameters q, r, and f , the dispatching loop carries out the nested
reduction with the efficient implementation efficientImpl of the theorem, and exits
the dispatching loop with the computed result. If there is no theorem available, the
naive implementation naiveImpl is used to get the result. The current dispatching
loop assumes that a theorem appearing earlier provides more efficient implementa-
tion.

The check on application conditions is performed by checking annotations on
types of the objects. For example, Figure 6.26 shows a trait DistributesOverJEK to
annotate a reduction object about its distributivity. When an operator represented
by an object of type R has distributivity over another operator represented by an
object of type Q, R extends the trait DistributesOverJQK to inform the library of
its possessing the property. Then, a function distributes checks possession of the
distributivity by using typecase expression. Other properties can be annotated
similarly using traits.

Figure 6.27 shows reduction object SumReduction annotated with the trait for
the distributivity. Since the addition operator distributes over the maximum opera-
tor and the minimum operator, the object extends DistributesOverJMaxReductionK
for distributivity over the maximum, and DistributesOverJMinReductionK for dis-
tributivity over the minimum.

Using such annotations on objects, we can successfully implement knowledge of
theorems in the library. Figure 6.28 shows example implementation of the combina-
tion of Theorem 5.33 and Lemma 5.31 on prefixes. Its translation for comprehension
notation is as follows.
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conditionDistributiveJR K(q : ReductionJR K, r : ReductionJR K, f : E → R) : Boolean
= distributes(q, r)

efficientImplDistributiveJR K(q : ReductionJR K, r : ReductionJR K, f : E → R) = do

join(x : (R,R), y : (R,R)) : (R,R) = do (i1, s1) = x
(i2, s2) = y
(q.join(i1, r.join(s1, i2)), r.join(s1, s2))
end

zero1 = (q.empty(), r.empty())
wrap(a :R) : (R,R) = (a, a)
unwrap(a : (R,R)) = do (r1, r2) = a; r1 end
unwrap(seed().generateJ(R,R)K(makeReductionJ(R,R)K(join, zero1),wrap ◦ f))

end

theoremsJRK() = 〈 (fn (r, q, f)⇒ conditionDistributiveJR K(r, q, f),
fn (r, q, f)⇒ efficientImplDistributiveJR K(r, q, f)) 〉

Figure 6.28. A method to check the condition of Lemma 6.4 and a method imple-
menting the provided efficient implementation. A pair of the two methods is added
to the list theorems in the GoG object of prefixes, so that the library can exploit its
knowledge.

Theorem 6.4. Provided that ⊗ distributes over ⊕, the following equation holds.

⊕
〈
⊗
〈f y | y ← ys〉 | ys ← prefixes xs〉

= fst2 (
⊙

p〈 (f x, f x) | x← xs〉)
where (i1, s1)⊙p (i2, s2) = (i1 ⊕ (s1 ⊗ i2), s1 ⊗ s2)

fst2 (a, b) = a

The library implements the theorem as the pair of methods: conditionDistributive
to check its application condition, and efficientImpDistributive to perform its provid-
ing efficient implementation. Since the condition is that the operator ⊗ is distribu-
tive over ⊕, the method conditionDistributive uses the function distributes to know
whether the operator has the distributivity. The method efficientImpDistributive
implements the efficient implementation straightforwardly, in which it uses direct
invocation of method generate instead of the comprehension, and the function
makeReduction encloses the new operator (join) and its identity (zero1 ) in an ob-
ject. Finally, to use the knowledge of the theorem in the library, the pair is added
to the list theorems.

It is easily seen that the same functionality to dispatch efficient implementation
based on theorems is implementable for other domains of computations.

Extension of Desugaring Process

We extend the desugaring process of comprehensions in Fortress to handle GoGs in
nested reductions. The following rules are added to the existing desugaring algo-
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Target specification of nested reductions Application condi-
tion

Efficient implementation.

⊕
〈
⊗
〈f y | y←ys〉 | ys←prefixes xs〉 ⊗ distributes over ⊕ fst2 (

⊙
p〈(f x, f x) | x←xs〉)

⊕
〈
⊗
〈f y | y←ys〉 | ys←suffixes xs〉 ⊗ distributes over ⊕ fst2 (

⊙
s〈(f x, f x) | x←xs〉)⊕

〈
⊗
〈f y | y←ys〉 | ys←segments xs〉 ⊗ distributes over ⊕,

⊕ is commutative
fst4 (

⊙
t〈(f x,f x,f x,f x) |x←xs〉)

⊕
〈
⊗
〈f y | y←ys〉 |ys←prefixes xs, p ys〉 ⊗ distributes over ⊕,

p is relational
fst4 (

⊙
p′ 〈(f x, f x, x, x) | x←xs〉)

⊕
〈
⊗
〈f y | y←ys〉 | ys←suffixes xs, p ys〉 ⊗ distributes over ⊕,

p is relational
fst4 (

⊙
s′ 〈(f x, f x, x, x) | x←xs〉)

⊕
〈
⊗
〈f y |y←ys〉 |ys←segments xs, p ys〉 ⊗ distributes over ⊕,

⊕ is commutative, p
is relational

fst6 (
⊙

t′ 〈(fx,fx,fx,fx,x,x) |x←xs〉)

Table 6.4. A part of the collection of the composed theorems written in comprehen-
sion notation.

rithm.

DS(
⊕
〈
⊗
〈f x |x← xs〉 |xs ← gg〉) = gg .generate2 (⊕,⊗, f)

DS(⊕〈body |x← gg , p x, gs〉)
= DS(⊕〈body |x← gg .filter(p), gs〉)

The first rule desugars a nested reduction with a GoG into an invocation of the
method generate2 of the GoG. This rule connects the comprehension notation to
the optimization mechanism of GoGs.

The second rule squeezes a filter with a predicate p into the preceding GoG gg ,
to result in another GoG gg .filter(p) that generates only filtered generators of those
the original produces. Each GoG has the method filter to take a predicate and
returns such another GoG, although it is not discussed in the implementation of
the GoG in the previous section for simplicity. The extension of the optimization
mechanism to involve predicates is straightforward.

It is worth noting that the beta specification of Fortress supports library-level
extensions of syntax for domain-specific languages. We would be able to use the
feature to implement the desugaring process completely in our library, although
the current extension is implemented in the interpreter. It would be noted that
the desugaring process is independent from the optimization mechanism; it simply
supports easy description of nested reductions.

Growing the Library

The library can improve its expressiveness and optimization power by enriching the
collections of GoGs and theorems.

We have added GoGs corresponding to the generation functions shown in Sec-
tion 5.3. Some functions have alternative familiar names: prefixes for inits, suffixes
for tails, segments for segs , subseqs for subs, and subrecs for rects ′.

Also, we have added theorems (lemmas) shown in Section 5.3, in which some
theorems are implemented as combinations of two or more theorems. Some of im-
plemented theorems are shown in Table 6.4.
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trait GeneratorATJEK
generateAT JRK(op : ReductionJRK, ot : ReductionJRK, body :E → R) : R

end

Figure 6.29. The base trait of generators for two-dimensional data structures. The
trait defines the interface method for the computation of the abide-tree homomor-
phism.

Implementation of GoGs for Two-dimensional Arrays

Now, we will briefly show the implementation of the abide-tree homomorphism in
GoGs for two-dimensional arrays.

Figure 6.29 shows the base trait of generators for two-dimensional data struc-
tures. The trait defines the interface method for the computation of the abide-tree
homomorphism. The interface method takes two reduction operators: one is for the
vertical direction and the other is for the horizontal direction.

Figure 6.30 shows concrete implementation of the abide-tree homomorphism, in
which the index spaces are divided into smaller ones in both horizontal and vertical
directions to get the sub-results, and the sub-results are combined by the given
operators. The wrapper object is prepared to perform the abide-tree homomorphism
on usual arrays not extending the trait.

Figure 6.31 shows the base trait of GoGs for two-dimensional data structures.
The new interface method receives four reduction operators: the first two for the
outer reduction, and the last two for the inner reductions. The trait has the list of
theorems, which is similar to the list in the trait Generator2, except for the number
of reduction operators.

The dispatching process is implemented similar to that of the method generate2.
Since comprehension notation for the abide-tree homomorphism is not prepared

in Fortress, users are required to invoke the interface method directly to perform
the abide-tree homomorphism. Fortunately, we can use the current comprehension
notation if we use the same operators in both directions. For example, the maxi-
mum rectangle sum problem is one example of such computation. In this case, the
interface method generate2 is invoked, and we can dispatch efficient implementation
in this method as shown in the previous section. It is an interesting task to design
comprehension notation for the abide-tree homomorphism.

6.4.6 Programming with the Library

We will show example programs written with the library.
Figure 6.32 shows an example Fortress program to compute the maximum p-

segment sum with the GoG library. The program imports the component Generator2
to use GoGs, and also imports List to use comprehensions. The main function run
first makes a one-dimensional array xs of 400 elements, and two relational predicates
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object GeneratorATWrapperJE, nat b1, nat s1, nat b2, nat s2K(x : Array2JE, b1, s1, b2, s2K)
extends GeneratorATJEK
generateAT JRK(op : ReductionJRK, ot : ReductionJRK, body :E → R) : R = do

loop′(lo1 :E, hi1 :E, lo2 :E, hi2 :E) =
if lo1 = hi1 ∧ lo2 = hi2 then body(x[(lo1, lo2)])
elif lo1 = hi1 then

split
2
= partitionL((lo2 BITXOR hi2) + 1)

mid2 = hi2 BITAND (BITNOT(split2 − 1))
ot .join(loop′(lo1, hi1, lo2,mid2 − 1), loop′(lo1, hi1,mid2, hi2))

elif lo2 = hi2 then
split

1
= partitionL((lo1 BITXOR hi1) + 1)

mid1 = hi1 BITAND (BITNOT(split1 − 1))
op.join(loop′(lo1,mid1 − 1, lo2, hi2), loop

′(mid1, hi1, lo2, hi2))
else

split
2
= partitionL((lo2 BITXOR hi2) + 1)

mid2 = hi2 BITAND (BITNOT(split2 − 1))
split

1
= partitionL((lo1 BITXOR hi1) + 1)

mid1 = hi1 BITAND (BITNOT(split1 − 1))
op.join(ot .join(loop′(lo1,mid1 − 1, lo2,mid2 − 1), loop′(lo1,mid1 − 1,mid2, hi2)),

ot .join(loop′(mid1, hi1, lo2,mid2 − 1), loop′(mid1, hi1,mid2, hi2)))
end

loop′(b1, b1 + s1 − 1, b2, b2 + s2 − 1)
end

end

Figure 6.30. Implementation of the abide-tree homomorphism with two operators.
The wrapper object is prepared to perform the computation on the usual arrays.

flat4 and ascending (Section 5.3.3) by specifying their relations to the predicate-
generation function relationalPredicate. Then, it computes the maximum flat4-
ascending-segment sum of xs , generaing all segments by the provided function segs ,
filtering the segments by the predicates, taking sums of segments by the reduction

∑
,

and taking the maximum of sums by the reduction with BIG MAX. Here, the program
explicitly specifies the static type parameters JNumberK of the operators and the
comprehension, and

∑
JNumberKys is the abbreviation of

∑
JNumberK〈y |y←ys〉.

It is worth noting that generators in Fortress is equipped with some fusion op-
timizations such that two consecutive maps are fused into one map, and two filter s
are also fused into one filter . Delaying their computations by making computation
objects instead of immediate execution of the computations, Fortress implements
those fusions at the library level.

Similarly, in arbitrary points of Fortress programs, we can write various compre-
hensions with GoGs to perform nested reductions. Table 6.5 lists comprehensions
written with GoGs for various applications, where ↓ is the minimum operator, and
∏

ys and
∑

ys are abbreviations of
∏〈y | y← ys〉 and ∑〈y | y← ys〉, respectively.

Nested reductions with GoGs can describe various applications including typical
problems in the functional community [Bir87, Gor97, SHTO00, Bir01], such as the
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trait Generator2ATJEK extends {Generator2JE K,GeneratorATJGeneratorATJEKK }
generate2AT JRK(op : ReductionJRK, ot : ReductionJRK, om : ReductionJRK, od : ReductionJRK, body :E → R) : R
theoremsAT JRK() : ListJ((ReductionJR K,ReductionJR K,ReductionJR K,ReductionJR K, E → R)→ Boolean,

(ReductionJR K,ReductionJR K,ReductionJR K,ReductionJR K, E → R)→ R)K = 〈 〉
naiveImplAT JR K(op : ReductionJRK, ot : ReductionJRK, om : ReductionJRK, od : ReductionJRK, f : E → R) : R =

generateAT JRK(op, ot , (fn (x)⇒ x.generateAT JRK(om, od , f)))
end

Figure 6.31. The base trait of GoGs for two-dimensional data structures. The inter-
face method receives four reduction operators: the first two for the outer reduction,
and the last two for the inner reductions.

component ExampleProgram

import List.{. . .}
import Generator2.{. . .}
export Executable

run() : () = do

xs = arrayJNumberK(400).fill(fn (x :Z32) : Number⇒ ⌊random(10)− 5⌋)
flat

4
= relationalPredicateJNumberK(fn (a, b)⇒ |a− b| < 4)

ascending = relationalPredicateJNumberK(fn (a, b)⇒ a < b)

mpss = BIG MAX JNumberK〈JNumberK∑JNumberKys | ys ← segs xs, f lat
4
ys , ascending ys 〉

println(“the maximum flat4-ascending-segment sum of xs is ” mpss)

end

end

Figure 6.32. Ax example Fortress program to compute the maximum p-segment
sum with the GoG library.

maximum prefix sum problem in the introduction, and the maximum segment sum
problem that is a simplified problem to find a region of interest in a given sequence.
Also, use of predicates can control targets of the inner reductions, which further
broadens the application area of GoGs. The predicates descending and equiv used
in examples are relational predicates of relations xi−1 > xi and xi−1 = xi, respec-
tively.

Most of the example comprehension shown above will be optimized at the run-
time by executing the computation with efficient algorithms, although their naive
computations are inefficient.

One feature of writing programs with GoGs is its easiness of writing nested re-
duction with various dependencies in clear and uniform expression. Writing nested
reductions without GoGs usually requires explicit use of several or many indices gen-
erated by generators, which decreases productivity and maintainability of programs.
For example, a naive reduction on prefixes or suffixes uses two indices, and that of
segments needs three. Moreover, writing nested reductions on all subsequences is
very difficult, because it requires infinite indices to write it in the same way.
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Label Fortress code with GoGs Description
MPS BIG MAX 〈

∑
ys |ys←prefixes xs〉 The maximum of sums of prefixes

MSP BIG MIN 〈
∏

ys |ys←suffixes xs〉 The minimum of products of suffixes
MSS BIG MAX 〈

∑
ys |ys←segments xs〉 The maximum of sums of all continuous subsequences

PSS
∑
〈
∏

ys |ys←subseqs xs〉 The sum of products of all subsequences
pMPS BIG MAX 〈

∑
ys |ys←prefixes xs,flat4 ys〉 The maximum sum of 4-flat prefixes in which every difference

of neighboring elements is less than 4.
pMSP BIG MIN 〈

∏
ys |ys←suffixes xs,

descending ys〉
The minimum product of descendingly ordered suffixes.

pMSS BIG MAX 〈
∑

ys |ys←segments xs,
flat4 ys, ascending ys〉

The maximum sum of ascendingly ordered, 4-flat segments.

pPSS
∑
〈
∏

ys |ys←subseqs xs, equiv ys〉 The sum of products of subsequences made of equivalents.
MRS BIG MAX 〈

∑
ys |ys←subrecs xs〉 The maximum rectangle sum.

Table 6.5. Example comprehensions with GoGs.

Another advantage of writing programs with GoGs is that it reduces the risk of
losing maintainability caused by hand-optimization. Performing optimization with
high-level mathematical knowledge (i.e., calculation theorems) is not so hard for
humans, but doing it by hand poses the risk of losing maintainability. A programmer
cannot return an optimized program (i.e., an efficient implementation provided by a
theorem) to the non-optimized program, to change the reduction operators to those
not satisfying the application condition, unless he knows the original program.

Therefore, GoGs are very useful for easy and clear development of programs for
nested reductions.

6.4.7 Experiment Results

We measured the execution time of micro-benchmarks listed in Table 6.5 with and
without the optimization. We used the current Fortress interpreter (release 3294
from the subversion repository) [For08] run on a PC with two quadcore CPUs
(Intel R©Xeon R©E5430, total 8 cores), 8GB memory, and Linux 2.6.24.

Table 6.6 lists measured execution time for several data sets. The sizes of input
sequence (array) xs of the data sets (S, M, L, X) are (600, 1200, 12000, 120000) for
MPS, MSP, pMPS and pMSP, (60, 120, 1200, 12000) for MSS and pMSS, (8, 16,
—, —) for PSS and pPSS, (8× 8, 16× 16, 64× 64, 128× 128) for MRS. The table
also lists asymptotic cost of the computation for the input of size n (the length of
the input lists, and the width and the height of input arrays).

The figures of S and M without optimization show that the naive implementa-
tions are actually inefficient since their asymptotic cost is more than linear. Also,
comparison of the results of M with and without optimization shows that the ab-
solute execution time without optimization is much greater than that of efficient
implementations dispatched by the library. The figures for L and X with optimiza-
tion show that asymptotic cost of dispatched implementation is actually linear for
MPS, MSP, MSS, pMPS, pMSP, and pMSS, and cubic for MRS. It is worth not-
ing that codes dispatched by the library can achieve the same execution times as
hand-coded solutions to the problems, since the library dispatches the hand-coded
implementations given by calculation theorems, as long as they use generators for
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Without optimization With optimization
Label Asym. S M Asym. M L X

cost
MPS O(n2) 6.55 16.4 O(n) 0.253 0.576 2.02
MSP O(n2) 2.41 7.66 O(n) 0.21 0.772 1.85
MSS O(n3) 2.50 13.7 O(n) 0.053 0.110 0.34
PSS O(2n) 0.829 18.8 — — — —
pMPS O(n2) 7.17 26.2 O(n) 0.257 0.666 4.29
pMSP O(n2) 4.88 18.0 O(n) 0.152 0.627 5.26
pMSS O(n3) 3.04 18.3 O(n) 0.0389 0.132 0.903
pPSS O(2n) 0.192 21.5 — — — —
MRS O(n6) 5.52 615.12 O(n3) 3.00 65.94 370.2

Table 6.6. Measured execution time (in seconds) of nested reductions in Table 6.5
with/without optimization. The sizes of input sequence (array) xs of the data sets
(S, M, L, X) are (600, 1200, 12000, 120000) for MPS, MSP, pMPS and pMSP, (60,
120, 1200, 12000) for MSS and pMSS, (8, 16, —, —) for PSS and pPSS, (8 × 8,
16 × 16, 64 × 64, 128 × 128) for MRS. The table also lists asymptotic cost of the
computation for the input of size n (the length of the input lists, and the width and
the height of input arrays).

# of thm. 1 4 16 64 256 1024 4096
Time 3.55 3.18 4.3 9.6 28.7 103 395

Table 6.7. Overheads of the dispatching process for various numbers of theorems
(in milli-seconds).

flat reductions. The results of PSS and pPSS with optimization are omitted since
the library currently has no theorem for them. These results shows the library’s
optimization is dramatically effective for efficient computation of various nested re-
ductions.

We also measured overhead of the dispatching process in the method generate2 .
We used dummy GoGs such that each of them has the list theorems of l dummy
theorems. The condition of the dummy theorem checks distributivity and commu-
tativity of operators (with functions in Figure 6.26) but returns always false. Thus,
the dispatching process checks the dummy condition l times, and fails in finding an
applicable theorem. It finally executes its dummy naive implementation that per-
forms nothing. Therefore, we measured the execution time of the method generate2
of dummy GoGs as the time of dispatching process.

Table 6.7 lists measured time of dispatching process for various sizes of theorem
lists. The time of dispatching process is very small and ignorable against that
of nested reductions, unless too many (more than hundreds) theorems are given.
If so many theorems are given, we need to organize those theorems for efficient
dispatching. It is a part of future work.

We mention parallelism of dispatched efficient implementations. Each of them
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Figure 6.33. Speedup of programs listed in Table 6.5 for the data set X.

exploits parallelism provided by the existing generators in Fortress, since it just
supplies newly constructed operators and functions to the seed generator held in the
GoG. Therefore, parallelism of dispatched implementations is guaranteed by that
of generators in Fortress. Figure 6.33 shows speedup of the optimized programs
of Table 6.5. The figure shows good speedup of the programs. Unfortunately, the
current Fortress interpreter has limitations on parallelism (less than 4 times speedup
at the maximum for any programs), and thus the figure only shows the results of at
most 4 threads. This limitation will be removed in the future Fortress interpreter
or compiler, and thus the programs will be able to achieve better speedup, similar
to the results on C++ implementation (see Section 6.2).

Therefore, programmers can receive the benefit that they can get the results by
the optimized efficient parallel implementation by simply writing the naive programs.
Without the library, they would suffer from writing complicated hundreds-line code
for each program.

6.4.8 Discussion

Normalization of Comprehensions for Optimization

We show, with an example, that quite a lot of nested comprehensions can be sys-
tematically transformed into the form on which current our optimization mechanism
(desugaring process) works. The summary of transformations steps follows the ex-
ample transformation.

Consider the next nested comprehension as the example.
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BIG MAX 〈
∑
〈 f(y, b, w) | y ← ys , even y 〉 |
ys ← prefixes xs , ascending ys , b← bs 〉

This example computes a variant of the maximum prefix sum, in which the maxi-
mum is considered only on ascending prefixes, the summation is taken only on even
numbers, and the value is replaced with f(y, b, w) instead of the number itself (y)
within the summation.

The first step of the transformation is to fuse guards into their preceding gen-
erators, which is already shown in Section 6.4.5. For example, fusing guards in the
example we get the following program.

BIG MAX 〈
∑
〈 f(y, b, w) | y ← ys .filter(even) 〉 |
ys ← (prefixes xs).filter(ascending), b← bs 〉

This transformation is applicable, when each predicate depends only on a variable
in the left hand side of generators in the same comprehension.

The next step is to move depending generations to the edges. For example,
the example has the pair of depending generations y ← ys .filter(even) and ys ←
(prefixes xs).filter(ascending). Since the reduction operator MAX of the example is
commutative, we can perform this transformation to get the following program.

BIG MAX 〈∑〈 f(y, b, w) | y ← ys .filter(even) 〉 |
b← bs , ys ← (prefixes xs).filter(ascending) 〉

Here, ys ← (prefixes xs).filter(ascending) is moved to the edge using the commuta-
tivity.

The third step is to restructure comprehensions to extract the form. The first
stage of the restructuring is to strip generators from the outer comprehension, except
for the edge generator. Applying the restructuring, we get the following program
for the example, in which the generator b← bs is moved to a function h.

h(z) = BIG MAX 〈 z(b) | b← bs 〉
h(fn b⇒ BIG MAX 〈∑〈 f(y, b, w) | y ← ys .filter(even) 〉 |

ys ← (prefixes xs).filter(ascending) 〉)

The second stage then strips generators and predicates from the inner comprehen-
sion. Making a new function f ′′, we get the following result for the example.

h(z) = BIG MAX 〈 z(b) | b← bs 〉
h(fn b⇒ do f ′′(y) = if even y then f(y, b, w) else 0 end

BIG MAX 〈∑〈 f ′′y | y ← ys 〉 |
ys ← (prefixes xs).filter(ascending) 〉

end)

Here, the argument of h includes the nested reduction of the form, and it can be
processed by our optimization mechanism.

Here is the summary of transformations.
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Step. 1 Remove guards p x by fusing it with generators x← g xs .

⊕[ e | x← g xs , p x, gs ] ⇒ ⊕[ e | x← (g xs).filter(p), gs ]

Step. 2 Move depending generations to the edges. If there is depending generations
in generators of two comprehensions, move those depending generation to
the edges of comprehensions as follows.

⊕[⊗[ e | gs1 ] | gs2 ] ⇒ ⊕[⊗[ e | y ← fg ys , gs ′1 ] | gs ′2, ys← fgg xs ]

Here, fgg is one of GoGs with filter, and fg is the identity function or filter.
This transformation is valid if each operator of reductions is commutative
and there is no dependency of gs ′2 to ys .

Step. 3 Restructure comprehensions to extract the form. The following is a rule
used in this step.

⊕[⊗[ e | y ← fg ys , gs ′1 ] | gs ′2, ys← fgg xs ]
⇒⊕[⊕[⊗[⊗[ e | gs ′1 ] | y ← fg ys ] | ys← fgg xs ] | gs ′2 ]

This transformation is always valid, since it is a combination of steps used
in the usual desugaring process in Fortress. For readability, the result of
this transformation can be written as the following form.

h(⊕[⊗[ f ′(y) | y ← fg ys ] | ys← fgg xs ])
where h(z) =⊕[ z | gs ′2 ]

f ′(y) =⊗[ e | gs ′1 ]
Now, the argument of h has the desired form.

It is an interesting part of future work to implement more power full desugaring
process that can deal with the transformation.

It is worth noting that the transformation shown above has some restrictions
on target comprehensions. However, we think many practical examples satisfy the
restrictions.

Optimization of Three or More Nested Reductions

As far as we are aware, practical applications, such as nested queries on sequences,
do not actually need optimization on 3+ level deep reductions (comprehensions).
They can optimized by repeatedly applying optimizations for simply nested com-
prehensions (i.e., 2 level deep comprehensions), since optimization of simply nested
reductions often results in another flat reduction. We can implement such successive
optimizations on deeply nested reductions, if we let the dispatching process return
a computation object to perform the flat reduction instead of immediately execut-
ing the optimized reduction. This also requires some modification on the current
desugaring process.
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Implementation in Languages Other Than Fortress

A library with the same functionality can be implemented similarly on other pro-
gramming languages with subtyping and overloading, such as Java and C++. We
chose Fortress because of its features: parallelism by default, generators, and expres-
sion branching based on types. Those features enables us to make a smart and clear
library with interesting functionalities. For example, expressions branching based on
types, such as typecase, enable clear and fine control over dispatching implemen-
tations based on types. The control over priorities of overloaded functions in C++
is far more complicated and it would result in no maintainable libraries. We also
believe that the same functionality of our proposed library can be implemented in
functional languages such as Haskell [Jon02,The08] and Objective Caml [LDG+08].

Dynamic Dispatching and Static Dispatching

Although our current implementation uses dynamic dispatching of implementations,
we believe that the dispatching can also be done statically based on static types at
compile time. For example, we can use C++ template specialization for the static
dispatching. The static dispatching has the advantage that it has no dispatching
overhead at runtime.

The experiment results, however, show that the overhead of the dynamic dis-
patching is reasonably small with respect to computation time of the reductions,
and the overhead is ignorable. Also, the dynamic dispatching has another advan-
tage that it can use runtime type information. Since it is generally finer than the
static type information, the dynamic dispatching can apply better calculation rules
in the optimization, and this advantage would be far better than the advantage of
static dispatching.

Non-mathematical Properties

It is worth noting that our optimization mechanism can handle so-called “non-
mathematical” properties, as long as we can make calculation theorems involving
the properties. For example, the floating point addition does not satisfy the math-
ematical property “associativity,” but it is approximately associative. We would
be able to develop a theory involving the “approximated associativity,” in which
calculation theorems give efficient implementations to compute the equivalent re-
sults under the approximation. Actually, Fortress’ generators change the computa-
tional structures under the approximated associativity of reduction operators. Also,
parallelization with OpenMP [CDK+01,CJvdP07] does the same approximation to
restructure computation of loops, and this approximation is reasonable and widely
accepted.
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6.5 Related Work

We review our work in context of comprehensions, nested reduction, and rewriting.

Comprehensions and Nested Reductions

Programming using comprehension has been considered a promising approach for
concise parallelization, with a history of decades-long research [BS90,BHS+94,Ble96,
BG96,CK00,CK01,CKLP01,LCK06,CLJ+07,FRR+07]. The research contributed
to extracting data parallelism in aggregate computations they naturally express;
these previous approaches do not leave to user programmers detailed controls on
parallel computation, for example, how data is distributed among processors or
how the systems carry out computation in parallel. Generators in Fortress allows
flexibility in this respect, enabling sophisticated tuning of programs according to
variety of their running circumstances. The previous work also studied optimiza-
tion through flattening of nested comprehensions to effectively exploit a flat par-
allelism [BS90,LCK06] or fusion of successive operations to eliminate intermediate
data passed among them [CK01]. These efforts stayed, however, in the problem of
balancing computation tasks of nested reductions. Our work successfully goes one
big step further to improve the complexity of computation without the hassles of
programmers.

Library-level Optimizations

Another area of theoretical computer science, namely term rewriting, relates to
our research. Glasgow Haskell Compiler (GHC) is one existing example to employ
this technique: its RULES pragma [The08] enables users to implement library-level
optimization by rewriting based on a set of rewriting rules. For example, the short
cut fusion [GLJ93] is implemented by a set of rewriting rules in GHC. This approach,
however, often suffers from inability to extract properties or surrounding contexts
for applying correct and suitable rules, and the GHC’s RULES pragma is not the
exception. Our proposed library similarly performs optimization by rewriting, but
with automatically examining specific mathematical properties of the input program
to guarantee that the rewritten output program is actually a parallel program. Our
approach therefore can be seen as an alternative to optimization by rewriting.

Broadway compiler [GL05] and the telescoping languages system [KBC+05] also
employ library-level optimization by rewriting. Their rewriting rules concern math-
ematical properties of operand values of operations, while ours mainly concern prop-
erties of operators and functions given to higher-order functions.

Skeleton Libraries and Systems

Many skeleton libraries and systems have been proposed so far, which includes
P3L [BDO+95,DPP97,Pel98], SCL [DFH+93,DGTY95], eSkel [Col04,BC05,BCHG05],
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MuesLi [Kuc02], and QUAFF [FSCL06] .
The P3L [Pel98,BDO+95,DPP97] system adopts the idea of separating the higher

skeletal parallel part from the lower, sequential part in parallel programs. In a P3L
program, skeletal part is written in a functional notation, while the base part is de-
scribed in the C language. From these descriptions, the P3L compiler generates a C
code that calls MPI library functions. The system supports data parallel skeletons
and communication skeletons for distributed lists. It also supports control paral-
lel skeletons. The selection of the set of data parallel skeletons is similar to our
framework.

In Darlington’s framework SCL [DFH+93,DGTY95], the user writes a parallel
program in two-layer structure: higher skeleton level and lower base language level.
The user writes the higher level of the program with skeletons, abstracting its paral-
lel behavior using the SCL (Structured Coordination Language). Its syntax is some
kind of functional notation. The lower sequential part of the program is described
in the base language. The system supports data parallel skeletons and communica-
tion skeletons for distributed arrays (one or two dimensional), and control parallel
skeletons.

eSkel [Col04, BC05, BCHG05] is a library of C functions, also implemented on
top of MPI. The latest version of eSkel supports control parallel skeletons, putting
emphasis on addressing the issues of nesting of skeletons and interaction between
parallel activities.

Muesli, developed by Kuchen [Kuc02], is a C++ library that works using MPI.
It supports data parallel skeletons for distributed list and matrix, and task parallel
skeletons. The system has two tier model: a parallel computation consists of a
sequence of independent task parallel computations where each computation may
nest task parallel skeletons arbitrarily, and an atomic (i.e. non-nested) task parallel
computation can contain data parallelism. However, nesting constructors for the
corresponding skeletons to generate a process topology is sometimes hard for the
user because of low abstraction of task parallel skeletons.

QUAFF [FSCL06] is a skeleton-based parallel programming library on C++.
It supports three task parallel skeletons. Its main originality is to rely on C++
template meta-programming techniques to achieve high efficiency. In particular, by
performing most of skeleton instantiation and optimization at compile-time, QUAFF
can keep the overhead very small.

APL [Ive62,FI73,Ber93] is a pioneer language that supports operators to manip-
ulate arrays, namely array operators. APL’s array operators supports element-wise
computations, reductions to collapse arrays with binary operators, and manipula-
tion of the layout of arrays such as shift and rotate. More complex computations
on arrays can be made by composing the array operators. The idea of APL is the
same as skeletal parallel programming, in the sense that both provide users with a
set of basic patterns of array computations, and let users make sophisticated com-
putations by compositions of these basic patterns. Also, both array operators and
skeletons conceal complicated parallelism from users.



Chapter 7

Conclusion

7.1 Summary of the Thesis

This thesis has studied homomorphism-based structured parallel programming (also
known as skeletal parallel programming), in which the skeletons to organize parallel
programs have been designed based on homomorphisms of algebras of data struc-
tures. Structured by homomorphisms, the designed skeletons have good compos-
ability and good optimizability.

In the first part of the thesis, we have studied the homomorphism-based de-
sign of parallel skeletons for lists, two-dimensional arrays, and trees. Structured by
homomorphisms, the designed skeletons have good composability and good opti-
mizability. Especially, we have successfully designed skeletons for two-dimensional
arrays, which had remained as a challenging problem. We have used the abide-tree
algebra to represent two-dimensional arrays, which has nice freedom for parallelism
owing to the abide property of constructors. The abide-tree algebra can be seen as
an extension of the monoid algebra. We have shown that the designed skeletons are
well composable with each other to build parallel programs for various problems.

In the second part, we have studied optimization of skeleton programs to solve
the inefficiency problem of the compositional-style programming of skeletons. Based
on the nice fusion laws of homomorphisms, we have successfully developed domain-
independent fusion optimization for the skeletons, in which consecutive skeletons
are fused into one skeleton to eliminate the redundant intermediate data structures
between them. We have shown a derivation of non-trivial efficient programs for
the maximum rectangle sum problem from naively-composed skeleton programs,
as well as a general strategy for the derivation. The result shows that we can
systematically develop non-trivial efficient algorithms from naive compositions of our
skeletons. Also, we have proposed studied domain-specific optimizations for skeleton
programs, to solve problems of the domain-independent fusion optimizations. We
have concentrated on optimization of skeleton programs for computation involving
neighbor elements, which can be categorized into two types: that involving a finite
number of neighbor elements, such as filtering of sequences and images, the finite
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difference method, and some matrix-vector operations; and that involving an infinite
number of neighbor elements, such as queries of interesting segments on lists and
rectangles (sub-arrays) on two-dimensional arrays. We have developed domain-
specific fusion rules for the former type, proposing a new strategy for developing
domain-specific fusion optimization of skeleton programs. Then, for the latter type
that have been formalized as nested reductions, we have developed shortcut theorems
to provide efficient algorithms to nested reductions by fusion. We have succeeded in
developing the domain-specific fusions and the optimization theorems, owing to the
solid theories of carefully designed homomorphism-based skeletons. Also, we have
succeeded in widening the application area of our skeleton programming.

In the last part of the thesis, we have reported implementations of designed
skeletons and optimization mechanisms. We have shown implementations of skele-
tons for distributed parallel machines, in which the parallelism of homomorphism
guarantees their parallelism. We have shown small systems for domain-independent
and domain-specific fusions, which have been implemented as source-to-source trans-
lators. Experiment results show the success of the implementations and the base
theories. We have also proposed the general design of libraries with optimization
capabilities based on optimization theorems in our theories. The design has been
demonstrated with the implementation of the GoG library for nested reductions
in Fortress, in which the useful comprehension notation is linked to our skeleton
theories. The implementation of the optimizing libraries is lightweight in the sense
that it does not need deep analysis of program codes. The key point is the fact
that application conditions of theorems are described with parameters’ possession
of mathematical properties, which is due to the uniform structure of skeletons based
on homomorphisms, i.e., higher-order functions. The implemented libraries can be
seen as active dictionaries of algorithms, in the sense that efficient implementations
are indexed in the dictionaries by naive programs.

7.2 Future Work

Although we have shown a strategy to make efficient parallel algorithms from naive
compositions of skeletons, there is still a demand for methodologies to construct
the initial naive compositions. Especially, there is a demand for a strong method-
ology to derive operators with the abide property, to derive naive parallel programs
for two-dimensional arrays. For skeletal parallel programs on one-dimensional data
structures, some techniques have been proposed to derive skeleton programs (as-
sociative operators). The key of one technique is the use of the associativity of
function compositions as the seed of associative operators. We might be able to
apply the key idea to derivation of abide operators. We have found two pairs of
such seed operations: the pair of function composition and function tupling, and
the pair of matrix multiplication and tensor product. Unfortunately, neither of seed
pairs results in useful operator pairs, since one of the derived pair operators builds
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big structures, in other words, it simply delays computations of its direction. Thus,
investigation of good seed pairs is one part of future work.

Extension of parallel skeletons to multi-dimensional data structures is also one
direction of future work. We have not found many application problems that essen-
tially need multi-dimensional data structures, though.

Automatic discovery of mathematical properties of program objects is very useful
for automatic optimization with calculation theorems. Also, a technique to solve
priority problems in applying calculation theorems is still an open problem [PP96],
since a greedy selection of a sequence of theorems does not necessarily result in the
best implementation. We have avoided such priority problem by implementing only
big-step theorems. However, the problem would arise again when the number of
big-steps becomes large. Study of these techniques is one direction of future work.

It is also interesting future work to study the integration of data-parallel skeletons
and task-parallel skeletons. The computation provided by task-parallel skeletons dis-
tributes tasks among processors, while the computation by data-parallel skeletons
distributes data structures among processors, and carries out almost the same pro-
cess on each processor. This thesis have studied data-parallel skeletons structured
by homomorphisms on data structures, since the center of their computation is the
data structure. However, it is an open problem what should be used to structure
task-parallel skeletons. It is also an open problem whether we can integrate the the-
ory of structured task-parallel skeletons into the theory of structured data-parallel
skeletons.

Although we have shown that some matrix operations can be described with
our skeletons, some matrix operations are not so easily written with the designed
skeletons. Also, conditions for optimizing these operations are often described with
properties of input matrices, while the optimization of our skeletons have conditions
on operators (functions). Therefore, we might have to take another approach to
structuring and optimizing those operations. Some results are found in a technical
report [EHK+09].
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Appendix A

Auxiliary Rules for Skeletons on
Two-dimensional Arrays

Rule I

map f (zipwith(⊕) x y) = zipwith(⊕′) (map f x) (map f y)
⇐ ∀a, b f (a⊕ b) = f a⊕′ f b

Proof: It is proved by induction on the structure of abide trees.

map f (zipwith(⊕) |a| |b|)
= { def. of zipwith,map }
|f (a⊕ b)|

= { hypo. }
|f a⊕′ f b|

= { def. of zipwith,map }
zipwith(⊕′) (map f |a|) (map f |b|)

map f (zipwith(⊕) (x−◦ y) (u−◦ v))
= { def. of zipwith,map }

map f (zipwith(⊕) x u)−◦map f (zipwith(⊕) y v)
= { hypo. of induction }

zipwith(⊕′) (map f x) (map f u)−◦ zipwith(⊕′) (map f y) (map f v)
= { def. of zipwith,map }

zipwith(⊕′) (map f (x−◦ y)) (map f (u−◦ v))

map f (zipwith(⊕) (x − ◦ y) (u − ◦ v))
= { similar to−◦ }

zipwith(⊕′) (map f (x − ◦ y)) (map f (u − ◦ v))

Rule II

map (reduce(⊕,⊗)) (zipwith(−◦) x y)
= zipwith(⊕) (map (reduce(⊕,⊗)) x) (map (reduce(⊕,⊗)) y)
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Proof: Rule I and the following calculation with f = reduce(⊕,⊗),⊕ =−◦,⊕′ = ⊕ .

reduce(⊕,⊗) (a−◦ b) = reduce(⊗,⊕) a⊕ reduce(⊗,⊕) b

Rule III

map f (gemm(⊕,⊗) x y) = gemm(⊕′,⊗′) (map f x) (map f y)
⇐ ∀a, b f (a⊕ b) = f a⊕′ f b, f (a⊗ b) = f a⊗′ f b

Proof: It is proved by induction on the structure of abide trees.

map f (gemm(⊕,⊗) |a| |b|)
= { def. of gemm,map }
|f (a⊗ b)|

= { hypo. }
|f a⊗′ f b|

= { def. of gemm,map }
gemm(⊕′,⊗′) (map f |a|) (map f |b|)

map f (gemm(⊕,⊗) (x−◦ y) z)
= { def. of gemm,map }

map f (gemm(⊕,⊗) x z)−◦map f (gemm(⊕,⊗) y z)
= { hypo. of induction }

gemm(⊕′,⊗′) (map f x) (map f z)−◦ gemm(⊕′,⊗′) (map f y)) (map f z)
= { def. of gemm,map }

gemm(⊕′,⊗′) (map f (x−◦ y)) (map f z)

map f (gemm(⊕,⊗) x (y − ◦ z))
= { similar to above }

gemm(⊕′,⊗′) (map f x) (map f (y − ◦ z))

map f (gemm(⊕,⊗) (x − ◦ y) (u−◦ v))
= { def. of gemm,map }

map f (zipwith(⊕) (gemm(⊕,⊗) x u) (gemm(⊕,⊗) y v))
= { I }

zipwith(⊕′)(map f (gemm(⊕,⊗) x u)) (map f (gemm(⊕,⊗) y v))
= { hypo. of induction }

zipwith(⊕′)(gemm(⊕′,⊗′) (map f x) (map f u))
(gemm(⊕′,⊗′) (map f y) (map f v))

= { def. of gemm,map }
gemm(⊕′,⊗′) (map f (x−◦ y)) (map f z)

Rule IV

map f (map(⊕x) y) = map (⊗′(f x))(map f y)
⇐ ∀a, b f (a⊕ b) = f a⊕′ f b
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Proof: It is proved by induction on the structure of abide trees.

map f (map(⊕x) |a|)
= { def. of map }
|f (x⊕ a)|

= { hypo. }
|f x⊕′ f a)|

= { def. of map }
map (⊗′(f x))(map f y)

map f (map(⊕x) (y − ◦ z))
= { def. of map }

map f (map(⊕x) y) − ◦ map f (map(⊕x) z)
= { hypo. of induction }

map (⊗′(f x))(map f y) − ◦ map (⊗′(f x))(map f z)
= { def. of map }

map (⊗′(f x))(map f (y − ◦ z))

The inductive case for−◦ is proved similarly.
The following is an instance of this rule:

map sum (zipwith (−◦) a b) = zipwith(+) (map sum a) (map sum b)

Rule V

map f (right ′ x) = right ′(map (map f) x)

Proof:

map f ◦ right ′
= { def. of right ′ }

map f ◦ the ◦right
= { def. of right }

map f ◦ the ◦ reduce(−◦,≫) ◦map | · |
= { def. of the,map }

the ◦map (map f) ◦ reduce(−◦,≫) ◦map | · |
= { VI }

the ◦ reduce(−◦,≫) ◦map (map (map f)) map | · |
= { def. of | · |,map }

the ◦ reduce(−◦,≫) ◦map | · | ◦map (map f))
= { def. of right ′ }

right ′ ◦map (map f)

This rule for top′ holds similarly.

Rule VI

map f ◦ reduce(⊕,⊗) = reduce(⊕,⊗) ◦map (map f)
⇐ ⊕,⊗ ∈ {−◦, − ◦,≪,≫}
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Proof:

map f (reduce(⊕,⊗) |a|)
= { def. of reduce }

map f a
= { def. of reduce }

reduce(⊕,⊗) |map f a|
= { def. of map }

reduce(⊕,⊗) (map (map f) |a|)

map f (reduce(⊕,⊗) (x − ◦ y))
= { def. of reduce }

map f (reduce(⊕,⊗) x⊗ reduce(⊕,⊗)y)
= { below }

map f (reduce(⊕,⊗) x)⊗map f (reduce(⊕,⊗)y)
= { hypo. of induction }

reduce(⊕,⊗) (map (map f) x)⊗ reduce(⊕,⊗) (map (map f) y)
= { def. of map, reduce }

reduce(⊕,⊗) (map (map f) (x − ◦ y))
The inductive case for−◦ is proved similarly.

map f (x⊕ y) = map f x⊕map f y ⇐ ⊕ ∈ {−◦, − ◦,≪,≫}
Proof:

map f (x − ◦ y) = map f x − ◦ map f y
map f (x−◦ y) = map f x−◦map f y
map f (x≫ y) = map f y = map f x≫ map f y
map f (x≪ y) = map f x = map f x≪ map f y

Rule VII

map f (zipwith
4
g x u w a)

= zipwith
4
g′ (map f1 x) (map f2 u) (map f3 w) (map f4 a)

⇐ f (g x u w a) = g′ (f1 x) (f2 u) (f3 w) (f4 a)

Proof: It is proved by induction on the structure of abide trees.

map f (zipwith
4
g |a| |b| |c| |d|)

= { def. of zipwith,map }
|f (g a b c d)|

= { hypo. }
|g′ (f1 a) (f2 b) (f3 c) (f4 d)|

= { def. of zipwith,map }
zipwith

4
g′ (map f1 |a|) (map f2 |b|) (map f3 |c|) (map f4 |d|)

map f (zipwith
4
g (a − ◦ x) (b − ◦ y) (c − ◦ z) (d − ◦ w))

= { def. of zipwith,map }
map f (zipwith

4
g a b c d) − ◦ map f (zipwith

4
g x y z w)

= { hypo. of induction }
zipwith

4
g′ (map f1 a) (map f2 b) (map f3 c) (map f4 d)

− ◦ zipwith4 g′ (map f1 x) (map f2 y) (map f3 z) (map f4 w)
= { def. of zipwith,map }

zipwith
4
g′ (map f1 (a − ◦ x)) (map f2 (b − ◦ y)) (map f3 (c − ◦ z)) (map f4 (d − ◦ w))
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The inductive case for−◦ is proved similarly.

Rule VIII

sum ◦ ( − ◦x) = (+(sum x)) ◦ sum

Proof:

(sum ◦ ( − ◦x)) y = sum (y − ◦ x) = sum y + sum x = ((+(sum x)) ◦ sum) y

Rule IX

map sum(map ( − ◦ top′ tr2) tr1−◦ tr2)
= { def. of map }

map sum(map ( − ◦ top′ tr2) tr1)−◦map sumtr2
= { def. of map }

map (sum ◦ ( − ◦ top′ tr2)) tr1−◦map sumtr2
= { V, VIII }

map (+ top′ (map sum tr2)) (map sum tr1)−◦map sumtr2

Rule X

reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) a b) (zipwith(⊕) c d))
= reduce(⊕,⊕)(zipwith(⊗) a c)⊕ reduce(⊕,⊕)(zipwith(⊗) a d)
⊕ reduce(⊕,⊕)(zipwith(⊗) b c)⊕ reduce(⊕,⊕)(zipwith(⊗) b d)
⇐ (a⊕ b)⊗ (c⊕ d) = (a⊗ c)⊕ (a⊗ d)⊕ (b⊗ c)⊕ (b⊗ d)

Proof: It is proved by induction on the structure of abide trees.

reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) |a| |b|)) (zipwith(⊗) (zipwith(⊕) |c| |d|))
= { def. of zipwith, reduce }

(a⊕ b)⊗ (c⊕ d)
= { hypo. }

(a⊗ c)⊕ (a⊗ d)⊕ (b⊗ c)⊕ (b⊗ d)
= { def. of zipwith, reduce }

reduce(⊕,⊕)(zipwith(⊗) |a| |c|)⊕ reduce(⊕,⊕)(zipwith(⊗) |a| |d|)
⊕ reduce(⊕,⊕)(zipwith(⊗) |b| |c|)⊕ reduce(⊕,⊕)(zipwith(⊗) |b| |d|)
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reduce(⊕,⊕)
(zipwith(⊗) (zipwith(⊕) (a1 − ◦ a2) (b1 − ◦ b2))) (zipwith(⊗) (zipwith(⊕) (c1 − ◦ c2) (d1 − ◦ d2)))

= { def. of zipwith, reduce }
reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) a1 b1)) (zipwith(⊗) (zipwith(⊕) c1 d1))
⊕ reduce(⊕,⊕)(zipwith(⊗) (zipwith(⊕) a2 b2)) (zipwith(⊗) (zipwith(⊕) c2 d2))

= { hypo. of induction }
reduce(⊕,⊕)(zipwith(⊗) a1 c1)⊕ reduce(⊕,⊕)(zipwith(⊗) a1 d1)
⊕ reduce(⊕,⊕)(zipwith(⊗) b1 c1)⊕ reduce(⊕,⊕)(zipwith(⊗) b1 d1)

⊕ reduce(⊕,⊕)(zipwith(⊗) a2 c2)⊕ reduce(⊕,⊕)(zipwith(⊗) a2 d2)
⊕ reduce(⊕,⊕)(zipwith(⊗) b2 c2)⊕ reduce(⊕,⊕)(zipwith(⊗) b2 d2)

= { def. of zipwith, reduce }
reduce(⊕,⊕)(zipwith(⊗) (a1 − ◦ a2) (c1 − ◦ c2))
⊕ reduce(⊕,⊕)(zipwith(⊗) (a1 − ◦ a2) (d1 − ◦ d2))
⊕ reduce(⊕,⊕)(zipwith(⊗) (b1 − ◦ b2) (c1 − ◦ c2))
⊕ reduce(⊕,⊕)(zipwith(⊗) (b1 − ◦ b2) (d1 − ◦ d2))

The inductive case for−◦ is proved similarly.

Rule XI

max (map max (gemm( , zipwith(+)) b t))
= max (zipwith(+) (reduce (zipwith(↑), ) b) (reduce ( , zipwith(↑)) t))

⇐ width b = 1, height t = 1

Proof:It is proved by induction on the structure of abide trees.

max (map max (gemm( , zipwith(+)) |b| |t|))
= { def. of gemm }

max (map max (| zipwith(+) b t|))
= { def. of zipwith,map,max }

max (zipwith(+) b t)
= { def. of reduce }

max (zipwith(+) (reduce (zipwith(↑), ) |b|) (reduce ( , zipwith(↑)) |t|))

max (map max (gemm( , zipwith(+)) (b1−◦ b2) (t1 − ◦ t2)))
= { def. of gemm }

max (map max (((gemm( , zipwith(+)) b1 t1) − ◦ (gemm( , zipwith(+)) b1 t2))
−◦((gemm( , zipwith(+)) b2 t1) − ◦ (gemm( , zipwith(+)) b2 t2))))

= { def. of max }
max (map max (gemm( , zipwith(+)) b1 t1)) ↑

max (map max (gemm( , zipwith(+)) b1 t2))
↑ max (map max (gemm( , zipwith(+)) b2 t1))
↑ max (map max (gemm( , zipwith(+)) b2 t2))

= { hypo. of induction }
max (zipwith(+) (reduce (zipwith(↑), ) b1) (reduce ( , zipwith(↑)) t1))
↑ max (zipwith(+) (reduce (zipwith(↑), ) b1) (reduce ( , zipwith(↑)) t2))

↑ max (zipwith(+) (reduce (zipwith(↑), ) b2) (reduce ( , zipwith(↑)) t1))
↑ max (zipwith(+) (reduce (zipwith(↑), ) b2) (reduce ( , zipwith(↑)) t2))

= { X with ⊕ =↑,⊗ = + }
max (zipwith(+) (reduce (zipwith(↑), ) (b1−◦ b2)) (reduce ( , zipwith(↑)) (t1 − ◦ t2)))
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Rule XII

max (zipwith
4
fs s1 s2 r1 l2)

= max s1 ↑ max s2 ↑ max (zipwith(+) (map reduce(↑, ) r1) (map reduce( , ↑) l2))
where fs s1 s2 r1 l2 = s1 ↑ max (gemm( ,+) r1 l2) ↑ s2

⇐ width of elements of r1 = 1, height of elements of l2 = 1

Proof: First, we prove the following equation by the induction on the structure of abide trees.

max (zipwith
4
fs s1 s2 r1 l2) = max s1 ↑ max s2 ↑ max (zipwith f ′

s
r1 l2)

where f ′
s
r1 l2 = max (gemm( ,+) r1 l2)

Proof:

max (zipwith
4
fs |s1| |s2| |r1| |l2|)

= { def. of fs, zipwith }
s1 ↑ max (gemm( ,+) r1 l2) ↑ s2

= { def. of f ′
s
,max , associativity of ↑ }

max |s1| ↑ max |s2| ↑ max (zipwith f ′
s
|r1| |l2|)

max (zipwith
4
fs (s1

1 − ◦ s21) (s12 − ◦ s22) (r11 − ◦ r21) (l12 − ◦ l22))
= { def. of max , zipwith }

max (zipwith
4
fs s1

1
s1
2
r1
1
l1
2
) ↑ max (zipwith

4
fs s2

1
s2
2
r2
1
l2
2
)

= { hypo. of induction }
max s1

1
↑ max s1

2
↑ max (zipwith f ′

s
r1
1
l1
2
)

↑ max s2
1
↑ max s2

2
↑ max (zipwith f ′

s
r2
1
l2
2
)

= { def. of f ′
s
,max , associativity of ↑ }

max (s1
1 − ◦ s21) ↑ max (s1

2 − ◦ s22) ↑ max (zipwith f ′
s
(r1

1 − ◦ r21) (l12 − ◦ l22))

The inductive case for−◦ is proved similarly.
Then, we prove the following equation by the induction on the structure of abide trees.

max (zipwith f ′
s
r1 l2) = max (zipwith(+) (map reduce(↑, ) r1) (map reduce( , ↑) l2))

Proof:

max (zipwith f ′
s
|r1| |l2|)

= { def. of max , zipwith, f ′
s
}

max |max (gemm( ,+) r1 l2)|
= { below }

max (| reduce(↑, ) r1 + reduce(↑, ) l2|)
= { def. of zipwith,map }

max (zipwith(+) (map reduce(↑, ) |r1|) (map reduce( , ↑) |l2|))

max (zipwith f ′
s
(r1

1 − ◦ r21) (l12 − ◦ l22))
= { def. of max , zipwith }

max (zipwith f ′
s
r1
1
l1
2
) ↑ max (zipwith f ′

s
r2
1
l2
2
)

= { hypo. of induction }
max (zipwith(+) (map reduce(↑, ) r1

1
) (map reduce( , ↑) l1

2
))

↑ max (zipwith(+) (map reduce(↑, ) r2
1
) (map reduce( , ↑) l2

2
))

= { def. of max , zipwith,map }
max (zipwith(+) (map reduce(↑, ) (r1

1 − ◦ r21)) (map reduce( , ↑) (l1
2 − ◦ l22)))
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To complete the proof of the base case, we prove the next equation by the induction on the
structure of abide trees.

max (gemm( ,+) r1 l2) = reduce(↑, ) r1 + reduce(↑, ) l2
⇐ width r1 = 1, height l2 = 1

Proof:

max (gemm( ,+) |r1| |l2|)
= { def. of gemm,max }

r1 + l2
= { def. of reduce }

reduce(↑, ) |r1|+ reduce(↑, ) |l2|

max (gemm( ,+) (r1
1
−◦ r2

1
) (l1

2 − ◦ l22))
= { def. of gemm,max }

max (gemm( ,+) r1
1
l1
2
) ↑ max (gemm( ,+) r1

1
l2
2
)

↑ max (gemm( ,+) r2
1
l1
2
) ↑ max (gemm( ,+) r2

1
l2
2
)

= { hypo. of induction }
(reduce(↑, ) r1

1
+ reduce(↑, ) l1

2
) ↑ (reduce(↑, ) r1

1
+ reduce(↑, ) l2

2
)

↑ (reduce(↑, ) r2
1
+ reduce(↑, ) l1

2
) ↑ (reduce(↑, ) r2

1
+ reduce(↑, ) l2

2
)

= { associativity and distributivity }
(reduce(↑, ) r1

1
↑ reduce(↑, ) r2

1
) + (reduce(↑, ) l1

2
↑ reduce(↑, ) l2

2
)

= { def. of reduce }
reduce(↑, ) (r1

1
−◦ r2

1
) + reduce(↑, ) (l1

2 − ◦ l22)

Rule XIII

reduce(⊕,⊗) (map f x)
= f (reduce(⊕,⊗) x)⇐ f a⊗ f b = f (a⊗ b), f a⊕ f b = f (a⊕ b)

Proof: It is proved by induction on the structure of abide trees.

reduce(⊕,⊗) (map f |x|)
= { def. of reduce,map }

f x
= { def. of reduce }

f (reduce(⊕,⊗) |x|)

reduce(⊕,⊗) (map f (x−◦ y))
= { def. of reduce,map }

reduce(⊕,⊗) (map f x))⊕ reduce(⊕,⊗) (map f y)
= { hypo. of induction }

f (reduce(⊕,⊗) x)⊕ f (reduce(⊕,⊗) y)
= { hypo. }

f ((reduce(⊕,⊗) x)⊕ (reduce(⊕,⊗) y))
= { def. of reduce }

f (reduce(⊕,⊗) (x − ◦ y))

The inductive case for−◦ is proved similarly.
For instance, ⊕ = (don’t care)，⊗ = zipwith(↑) and f = zipwith(+) c1 satisfy the condition

f a⊗ f b = f (a⊗ b) .
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Rule XIV

reduce(⊕,⊗) (zipwith
4

f x y z w)
= f ′ (reduce(⊕1,⊗1) x) (reduce(⊕2,⊗2) y) (reduce(⊕3,⊗3) z) (reduce(⊕4,⊗4) w)

⇐ f a b c d = f ′ a b c d,
f ′ a b c d⊕ f ′ x y z w = f ′ (a⊕1 x) (b⊕2 y) (c⊕3 z) (d⊕4 w)
f ′ a b c d⊗ f ′ x y z w = f ′ (a⊗1 x) (b⊗2 y) (c⊗3 z) (d⊗4 w)

Proof: It is proved by induction on the structure of abide trees.

reduce(⊕,⊗) (zipwith
4

f |x| |y| |z| |w|)
= { def. of reduce, zipwith }

f x y z w
= { hypo. }

f ′ x y z w
= { def. of reduce }

f ′ (reduce(⊕1,⊗1) |x|) (reduce(⊕2,⊗2) |y|) (reduce(⊕3,⊗3) |z|) (reduce(⊕4,⊗4) |w|)

reduce(⊕,⊗) (zipwith
4

f (x1−◦ x2) (y1−◦ y2) (z1−◦ z2) (w1−◦ w2))
= { def. of reduce, zipwith }

reduce(⊕,⊗) (zipwith
4

f x1 y1 z1 w1)⊕ reduce(⊕,⊗) (zipwith
4

f x2 y2 z2 w2)
= { hypo. of induction }

f ′ (reduce(⊕1,⊗1) x1) (reduce(⊕2,⊗2) y1) (reduce(⊕3,⊗3) z1) (reduce(⊕4,⊗4) w1)
⊕f ′ (reduce(⊕1,⊗1) x2) (reduce(⊕2,⊗2) y2) (reduce(⊕3,⊗3) z2) (reduce(⊕4,⊗4) w2)

= { hypo. }
f ′ (reduce(⊕1,⊗1) x1 ⊕1 reduce(⊕1,⊗1) x2) (reduce(⊕2,⊗2) y1 ⊕2 reduce(⊕2,⊗2) y2)

(reduce(⊕3,⊗3) z1 ⊕3 reduce(⊕3,⊗3) z3) (reduce(⊕4,⊗4) w1 ⊕4 reduce(⊕4,⊗4) w2)
= { def. of reduce }

f ′ (reduce(⊕1,⊗1) (x1−◦ x2)) (reduce(⊕2,⊗2) (y1−◦ y2))
(reduce(⊕3,⊗3) (z1−◦ z2)) (reduce(⊕4,⊗4) (w1−◦ w2))

The inductive case for − ◦ is proved similarly.
For instance, f ′ a b c d = (a − ◦ gemm(↑,+) c d)−◦ (NIL − ◦ b), ⊗1 = zipwith(↑), ⊗2 = zipwith(↑),

⊗3 = − ◦ and ⊗4 = −◦ satisfy the condition for f a b c d = (a − ◦ gemm( ,+) c d)−◦ (NIL − ◦ b),
⊗ = zipwith(↑) and ⊕ = .

Rule XV

map (reduce(⊕, )) (gemm( , zipwith(⊗)) x y)
=gemm(⊕,⊗) (tr (reduce ( − ◦, )) x) (reduce ( , − ◦) y)
⇐ width of x and its elements = 1,width of y’s elements = 1, height y = 1

Proof: It is proved by induction on the structure of abide trees.

map (reduce(⊕, )) (gemm( , zipwith(⊗)) |x| |y|)
= { def. of map, gemm }
| reduce(⊕, ) x y|

= { below }
gemm (⊕,⊗) (tr x) y

= { def. of reduce }
gemm (⊕,⊗) (tr (reduce ( − ◦, ) |x|)) (reduce ( , − ◦) |y|)
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map (reduce(⊕, )) (gemm( , zipwith(⊗)) (x1−◦ x2) (y1 − ◦ y2))
= { def. of map, gemm }

(map (reduce(⊕, ))(gemm( , zipwith(⊗)) x1 y1)

− ◦map (reduce(⊕, )) (gemm( , zipwith(⊗)) x1 y2))
−◦(map (reduce(⊕, )) (gemm( , zipwith(⊗)) x2 y1)

− ◦map (reduce(⊕, )) (gemm( , zipwith(⊗)) x2 y2))
= { hypo. of induction }

(gemm (⊕,⊗) (tr (reduce ( − ◦, ) x1)) (reduce ( , − ◦) y1)

− ◦gemm (⊕,⊗) (tr (reduce ( − ◦, ) x1)) (reduce ( , − ◦) y2))
−◦(gemm (⊕,⊗) (tr (reduce ( − ◦, ) x2)) (reduce ( , − ◦) y1)

− ◦gemm (⊕,⊗) (tr (reduce ( − ◦, ) x2)) (reduce ( , − ◦) y2))
= { def. of gemm }

gemm (⊕,⊗) (tr (reduce ( − ◦, )x1) − ◦ tr (reduce ( − ◦, )x2)) (reduce ( , − ◦) y1 − ◦ reduce ( , − ◦) y2))
= { def. of tr , reduce }

gemm (⊕,⊗) (tr (reduce ( − ◦, ) (x1−◦ x2))) (reduce ( , − ◦) (y1 − ◦ y2))

To complete the proof, we prove the following equation by the induction on the structure of
abide trees.

| reduce(⊕, ) (zipwith(⊗) x y)| = gemm(⊕,⊗) (tr x) y
⇐ width x = 1,width y = 1

Proof:

| reduce(⊕, ) (zipwith(⊗) |x| |y|)|
= { def. of zipwith, reduce }
|x⊗ y|

= { def. of gemm, tr }
gemm(⊕,⊗) (tr |x|) |y|

| reduce(⊕, ) (zipwith(⊗) (x1−◦ x2) (y1−◦ y2))|
= { def. of zipwith, reduce }
| reduce(⊕, ) (zipwith(⊗) x1 y1)⊕ reduce(⊕, ) (zipwith(⊗) x2 y2)|

= { def. of zipwith }
zipwith(⊕) | reduce(⊕, ) (zipwith(⊗) x1 y1)| | reduce(⊕, ) (zipwith(⊗) x2 y2)|

= { hypo. of induction }
zipwith(⊕) (gemm(⊕,⊗) (tr x1) y1) (gemm(⊕,⊗) (tr x2) y2)

= { def. of gemm, tr }
gemm(⊕,⊗) (tr (x1−◦ x2)) (y1−◦ y2)

Rule XVI

map (reduce( ,⊕)) (gemm( , zipwith(⊗)) x y)
= gemm(⊕,⊗) (reduce (−◦, ) x) (tr(reduce ( ,−◦) y))
⇐ width x = 1, height of x’s elements = 1, height of y and its elements = 1

Proof: Similar to Rule XV.
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Rule XVII

map(reduce(↑, )) (zipwith
3
fr r1 r2 ro2)

= zipwith
3
f ′
r
(reduce (↑) r1) ro2 (reduce (↑, )r2)

where fr r1 r2 ro2 = map (+ro2) r1 − ◦ r2
f ′
r
r1 ro2 r2 = (r1 + ro2) ↑ r2

Proof: Rule VII and following calculation.

reduce(↑, ) (fr r1 r2 ro2)
= { def. of fr }

reduce(↑, ) ((map (+ro2)r1) − ◦ r2)
= { def. of reduce }

reduce(↑, ) (map (+ro2)r1) ↑ r2
= { + distributes over ↑ }

((reduce(↑, ) r1) + ro2) ↑ r2

Rule XVIII

reduce( , − ◦) (map (zipwith(+) (right ′ x)) y)
= mapc (zipwith(+) (right (reduce( , − ◦) x))) (reduce( , − ◦) y)
⇐ height x = 1,width of x’s elements = 1

Proof: First, we prove the next equation by the induction on the structure of abide trees.

reduce( , − ◦) (map f x) = mapc f (reduce( , − ◦) x)
⇐ height x = 1,width of x’s elements = 1

Proof:

reduce( , − ◦) (map f |x|)
= { def. of reduce,map }

f x
= { def. of mapc, height x = 1 }

mapc f x
= { def. of reduce }

mapc f (reduce( , − ◦) |x|)

reduce( , − ◦) (map f (x1 − ◦ x2))
= { def. of reduce,map }

map f x1 − ◦ map f x2

= { hypo. of induction }
mapc f (reduce( , − ◦) x1) − ◦ mapc f (reduce( , − ◦) x2)

= { def. of mapc }
mapc f (reduce( , − ◦) (x1 − ◦ x2))

To complete the proof, we prove the next equation by the induction on the structure of abide
trees.

right ′ x = right (reduce( , − ◦) x)
⇐ height x = 1,width of x’s elements = 1
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Proof:

right ′ |x|
= { def. of right ′ }

x
= { def. of right , width x = 1 }

right x
= { def. of reduce }

right (reduce( , − ◦) |x|)

right ′ (x1 − ◦ x2)
= { def. of right ′ }

right ′ x2

= { hypo. of induction }
right (reduce( , − ◦) x2)

= { def. of right }
right (reduce( , − ◦) x1 − ◦ reduce( , − ◦) x2)

= { def. of reduce }
right (reduce( , − ◦) (x1 − ◦ x2))

Rule XIX

reduce( − ◦, ) (map (zipwith(+) (top′ x)) y)
= mapc (zipwith(+) (top (reduce( − ◦, ) x))) (reduce( − ◦, ) y)
⇐ width x = 1,width of x’s elements = 1

Proof: Similar to Rule XVIII.

Rule XX

reduce( , − ◦) (zipwith f x y)
= mapr (zipwith(+) (top (reduce( , − ◦) y))) (reduce( − ◦, ) x)−◦ (reduce( − ◦, ) y)
⇐ height x = 1, height y = 1,width of x and y’s elements = 1

f x y = map (+(top′ y)) x−◦ y

Proof: Rule XIV with f ′ a b = mapr (zipwith(+) (top b)) a−◦ b and ⊗ = − ◦, ⊗1 = − ◦, ⊗2 = − ◦ .

Rule XXI

reduce( , − ◦) (zipwith f x y)
= mapr (zipwith(+) (top (reduce( , − ◦) y))) (reduce( − ◦, ) x)−◦ (reduce( − ◦, ) y)
⇐ width x = 1,width y = 1,width of x and y’s elements = 1

f x y = map (+(top′ y)) x−◦ y

Proof: Rule XIV with f ′ a b = mapr (zipwith(+) (top b)) a−◦ b and ⊕ = − ◦, ⊕1 = − ◦, ⊕2 = − ◦ .



Appendix B

Complete Proof of Theorem 5.1

In the following, we use an abbreviation of the index accessing for readability: 〈x〉i = at x i.
We assume that the length of an input list is n. The goal of this proof is to show the equation
evalP prog = eval (compile prog) for any prog .

Base Case

What we have to prove is the following equation for a list x.

evalP x = eval [[ [],Leafc id (Var x 0), [] ]] (B.1)

The ith element of the left-hand sides is as follows.

〈evalP x〉i = { definition of evalP }
〈evalP x〉i

The ith element of the right-hand sides is as follows.

〈eval [[ [],Leafc id (Var x 0), [] ]]〉i = { definition of eval }
〈map evalT (Leafc id (Var x 0)) [0..n− 1]〉i

= { ith element }
evalT (Leafc id (Var x 0)) i

= { definition of evalT and the identity function }
evalV (Var x 0) i

= { definition of evalV and ith element }
〈x〉i

Thus, the following equation holds.

〈evalP x〉i = 〈eval [[ [],Leafc id (Var x 0), [] ]]〉i
Since this equation holds for i ∈ [0..n− 1], the equation (B.1) holds.

Inductive Case for map

What we have to prove is the following equation for a function f and a program prog . Here,
compile prog = [[ ls, zms , rs ]].

evalP (map f prog) = eval [[map (comp f) ls , comp f zms,map (comp f) rs ]] (B.2)

To prove this equation, we first show a lemma.
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Lemma B.3. Let f be a function, t be a computational tree, and i be an index. Then, the
following equation holds.

evalT (comp f t) i = f (evalT t i)

Proof. This is shown by induction on Tree.
The Node case:

evalT (comp f (Node g l r)) i = { definition of comp }
evalT (Node (f ◦ g) l r) i

= { definition of evalT }
(f ◦ g) (evalT l i, evalT r i)

= { function composition }
f (g (evalT l i, evalT r i))

= { definition of evalT }
f (evalT (Node g l r) i)

The Leafv case:

evalT (comp f (Leafv g v)) i = { definition of comp }
evalT (Leafv (f ◦ g) v) i

= { definition of evalT }
(f ◦ g) (evalV v i)

= { function composition }
f (g (evalV v i))

= { definition of evalT }
f (evalT (Leafv g v) i)

The Leafc case:

evalT (comp f (Leafc c)) i = { definition of comp }
evalT (Leafc (f c)) i

= { definition of evalT }
f c

= { definition of evalT }
f (evalT (Leafc c) i)

Now, we show the equation (B.2). In the following, l = length ls , r = length rs, and idces =
[l..(n− r − 1)].

evalP (map f prog)
= { definition of evalP }

map f (evalP prog)
= { induction hypothesis }

map f (eval [[ ls, zms , rs ]])
= { definition of eval }

map f (map evalT0 ls ++map (evalT zms) idces ++map evalT0 rs)
= { definition of map and its distributivity: map h ◦map g = map (h ◦ g) }

map (f ◦ evalT0 ) ls ++map (f ◦ evalT zms) idces ++map (f ◦ evalT0 ) rs
= { Lemma B.3 and definition of evalT0 }

map (evalT0 ◦comp f) ls ++map (evalT (comp f zms)) idces ++map (evalT0 ◦comp f) rs
= { distributivity of map and definition of eval }

eval [[map (comp f) ls, comp f zms ,map (comp f) rs ]]

Thus, the equation (B.2) holds.
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Inductive Cases for shift≪ and shift≫

What we have to prove is the following equations for an element e and a program prog . Here,
compile prog = [[ ls, zms , rs ]].

evalP (shift≪ e prog) = eval [[ tail ls, slide (−1) zms, rs ++ [Leafc e] ]] (B.4)

evalP (shift≫ e prog) = eval [[ [Leafc e] ++ ls, slide 1 zms, init rs ]] (B.5)

To prove this equation, we first show a lemma.

Lemma B.6. Let d be an integer, i be an index, and t be a computational tree. Then, the
following equation holds.

evalT (slide d t) i = evalT t (i− d) (B.7)

Proof. This is shown by induction on Tree and Var .

The Node case:

evalT (slide d (Node f l r)) i = { definition of slide }
evalT (Node f (slide d l) (slide d r))) i

= { definition of evalT }
f (evalT (slide d l) i, evalT (slide d r) i)

= { induction hypothesis }
f (evalT l (i− d), evalT r (i− d))

= { definition of evalT }
evalT (Node f l r) (i− d)

The Leafv with Var case:

evalT (slide d (Leafv f (Var x s))) i = { definition of slide }
evalT (Leafv f (Var x (s+ d))) i

= { definition of evalT and evalV }
f (at x (i− (s+ d)))

= { arithmetic }
f (at x ((i− d)− s))

= { definition of evalT and evalV }
evalT (Leafv f (Var x s)) (i− d)

Since other cases of Leafv and the case of Leafc ignore the index i, the equation (B.7) holds in
these cases.

Thus, the equation (B.7) holds.

Now, we show the equation (B.4). In the following, l = length ls and r = length rs. First, we
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assume ls is not empty, i.e. l > 0.

evalP (shift≪ e prog)
= { definition of evalP }

shift≪ e (evalP prog)
= { induction hypothesis }

shift≪ e (eval [[ ls , zms , rs ]])
= { definition of eval }

shift≪ e (map evalT0 ls ++map (evalT zms) [l..(n− r − 1)] ++map evalT0 rs)
= { the relation shift≪ e x = tail x++ [e], and ls being not empty }

tail (map evalT0 ls) ++map (evalT zms) [l..(n− r − 1)] ++map evalT0 rs ++ [e]
= { definition of map and evalT0 }

map evalT0 (tail ls) ++map (evalT zms) (map (+1) [(l − 1)..(n− (r + 1)− 1)])
++map evalT0 (rs ++ [Leafc e])

= { distributivity of map, and Lemma B.6 }
map evalT0 (tail ls) ++map (evalT (slide (−1) zms)) [l′..(n− r′ − 1)]

++map evalT0 (rs ++ [Leafc e])
where l′ = length tail ls, r′ = length (rs ++ [Leafc e])

= { definition of eval }
eval [[ tail ls, slide (−1) zms , rs ++ [Leafc e] ]]

Next, we assume ls = [ ].

evalP (shift≪ e prog)
= { the same as the previous calculation }

shift≪ e (map evalT0 ls ++map (evalT zms) [l..(n− r − 1)] ++map evalT0 rs)
= { the relation shift≪ e x = tail x++ [e], and ls being empty }

tail (map (evalT zms) [0..(n− r − 1)]) ++map evalT0 rs ++ [e]
= { definition of tail }

map (evalT zms) ([1..(n− r − 1)]) ++map evalT0 rs ++ [e]
= { definition of map and evalT0 }

map (evalT zms) (map (+1) [0..(n− (r + 1)− 1)]) ++map evalT0 (rs ++ [Leafc e])
= { distributivity of map, Lemma B.6, and tail ls = [ ] }

map evalT0 (tail ls) ++map (evalT (slide (−1) zms)) [l′..(n− r′ − 1)]
++map evalT0 (rs ++ [Leafc e])

where l′ = tail ls, r′ = length (rs ++ [Leafc e])
= { definition of eval }

eval [[ tail ls, slide (−1) zms , rs ++ [Leafc e] ]]

Thus, the equation (B.4) holds.
The equation (B.5) is shown similarly.

Inductive Case for zip

What we have to prove is the following equation for two programs prog
1
and prog

2
. Here,

compile prog
1
= [[ ls1, zms1, rs1 ]] and compile prog

2
= [[ ls2, zms2, rs2 ]].

evalP (zip prog
1
prog

2
) = eval [[ ls , zms , reverse rs ]]

where zms = Node id zms1 zms2
ls = trim FromL ls1 ls2 zms1 zms2
rs = trim FromR (reverse rs1) (reverse rs2) zms1 zms2

(B.8)

To prove this equation, we first show a lemma.
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Lemma B.9. Let i be an index, and t be a computational tree. Then, the following equation
holds.

evalT0 (inst FromL i) = evalT t i (B.10)

Proof. This is shown by induction on Tree and Var .

The Node case:

evalT0 (inst FromL (Node f l r) i) = { definition of inst }
evalT0 (Node f (inst FromL l i) (inst FromL r i))

= { definition of evalT0 }
f (evalT0 (inst FromL l i), evalT0 (inst FromL r i))

= { induction hypothesis }
f (evalT l i, evalT r i)

= { definition of evalT }
evalT (Node f l r) i

The Leafv with Var case:

evalT0 (inst FromL (Leafv f (Var x s)) i) = { definition of inst }
evalT0 (Leafv f (Fix x (−s+ i) FromL))

= { definition of evalT0 }
f (at x (−s+ i))

= { definition of evalT }
evalT (Var x s) i

Since other cases of Leafv and the case of Leafc merely return the given tree and this tree ignores
the index, the equation (B.10) holds in these cases.

Thus, the equation (B.10) holds.

We also use the following lemma.

Lemma B.11. Let i be an index, and t be a computational tree. Then, the following equation
holds.

evalT0 (inst FromR i) = evalT t (n− 1− i)

Proof. Similar to the proof of Lemma B.9.

In the following, l1 = length ls1, r1 = length rs1, l2 = length ls2 and r2 = length rs2. First,
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we assume l1 ≥ l2 and r1 ≥ r2.

evalP (zip prog
1
prog

2
)

= { definition of evalP }
zip (evalP prog

1
, evalP prog

2
)

= { induction hypothesis }
zip (eval [[ ls1, zms1, rs1 ]]) (eval [[ ls2, zms2, rs2 ]])

= { definition of eval and zip, letting ls1 = ls11 ++ ls12 and rs1 = rs11 ++ rs12 }
zip (map evalT0 ls11) (map evalT0 ls2)
++ zip (map evalT0 ls11) (map (evalT zms2) [l2..(l1 − 1)])
++ zip (map (evalT zms1) [l1..(n− r1 − 1)]) (map (evalT zms2) [l1..(n− r1 − 1)])
++ zip (map evalT0 rs11) (map (evalT zms2) [(n− r1)..(n− r2 − 1)])
++ zip (map evalT0 rs12) (map evalT0 rs2)

= { Lemma B.9 and Lemma B.11 }
zip (map evalT0 ls11) (map evalT0 ls2)
++ zip (map evalT0 ls11) (map evalT0 (map (inst FromL zms2) [l2..(l1 − 1)])
++ zip (map (evalT zms1) [l1..(n− r1 − 1)]) (map (evalT zms2) [l1..(n− r1 − 1)])
++ zip (map evalT0 rs11) (map evalT0 (map (inst FromR zms2) [(r1 − 1)..r2])
++ zip (map evalT0 rs12) (map evalT0 rs2)

= { introducing (Node id), and definition of eval and evalT0 }
map evalT0 (zipwith (Node id) ls11 ls2)
++map evalT0 (zipwith (Node id) ls11 (map (inst FromL zms2) [l2..(l1 − 1)]))
++map (evalT (Node id zms1 zms2)) [l1..(n− r1 − 1)]
++map evalT0 (zipwith (Node id) rs11 (map (inst FromR zms2) [(r1 − 1)..r2]))
++map evalT0 (zipwith (Node id) rs12 rs2)

= { combining edge elements }
map evalT0 (zipwith (Node id) ls1 (ls2 ++map (inst FromL zms2) [l2..(l1 − 1)]))
++map (evalT (Node id zms1 zms2)) [l1..(n− r1 − 1)]
++map evalT0 (zipwith (Node id) rs1 (map (inst FromR zms2) [(r1 − 1)..r2] ++ rs2))

= { definition of eval and trim }
eval [[ ls, zms , reverse rs ]]

where zms = Node id zms1 zms2
ls = trim FromL ls1 ls2 zms1 zms2
rs = trim FromR (reverse rs1) (reverse rs2) zms1 zms2

The other cases (l1 ≥ l2 ∧ r1 < r2, l1 < l2 ∧ r1 ≥ r2 and l1 < l2 ∧ r1 < r2) are similarly shown.
Thus, the equation (B.8) holds.
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Auxiliary Rules for the Proof of
Theorem 5.44

Rule I

shift≪ e = flatten ◦ shift≪ [e] ◦map [·]

Proof: It is shown by the following calculation. Some where-clauses are omitted for readability.

shift≪ e
= { definition of shift≪ }

map π1 ◦ scanr′ (⊕) ( , e, ) ◦map f
where f a = (a, a,True)

( , c,True)⊕ ( , p, ) = (p, c,False)
(p, c,False)⊕ ( , , ) = (p, c,False)

= { flatten ◦map [·] = id }
flatten ◦map [·] ◦map π1 ◦ scanr′ (⊕) ( , e, ) ◦map f

= { [·] ◦ π1 = π1 ◦ ([·]× [·]× id) }
flatten ◦map π1 ◦map ([·]× [·]× id) ◦ scanr′ (⊕) ( , e, ) ◦map f

= { ([·]×[·]×id) x⊕ ([·]×[·]×id) y = ([·]×[·]×id) (x⊕ y), and fusion of map and scanr′ }
flatten ◦map π1 ◦ scanr′ (⊕) ( , [e], ) ◦map ([·]× [·]× id) ◦map f

= { ([·]× [·]× id) ◦ f = f ◦ [·] }
flatten ◦map π1 ◦ scanr′ (⊕) ( , [e], ) ◦map f ◦map [·])

= { definition of shift≪ }
flatten ◦ shift≪ [e] ◦map [·]

Rule II

flatten ◦ shift≪ y ◦map [·] = (++y) ◦ flatten ◦ shift≪ [ ] ◦map [·]



232

Proof: It is shown by the following calculation. Some where-clauses are omitted for readability.

(++y) ◦ flatten ◦ shift≪ [ ] ◦map [·]
= { definition of shift≪ }

(++y) ◦ flattenmap π1 ◦ ◦map (⊕( , [ ], )) ◦ scanr (⊕) ◦map f ◦map [·]
where f a = (a, a,True)

( , c,True)⊕ ( , p, ) = (p, c,False)
(p, c,False)⊕ ( , , ) = (p, c,False)

= { (++y) ◦ flatten = flatten ◦ (++[y]) }
flatten ◦ (++[y]) ◦map π1 ◦ ◦map (⊕( , [ ], )) ◦ scanr (⊕) ◦map f ◦map [·]

= { only the last element in the result of scanr (⊕) has True in the third component }
flattenmap π1 ◦map (⊕( , y, )) ◦ scanr (⊕) ◦map f ◦map [·]

= { definition of shift≪ }
flatten ◦ shift≪ y ◦map [·]

Rule III

shift≪ e (x++ y) = shift≪ (head y) x++ shift≪ e y

Proof: It is shown by the following calculation. Some where-clauses are omitted for readability.

shift≪ e (x++ y)
= { definition of shift≪ }

(map π1 ◦map (⊕( , e, )) ◦ scanr (⊕) ◦map f) (x++ y)
where f a = (a, a,True)

( , c,True)⊕ ( , p, ) = (p, c,False)
(p, c,False)⊕ ( , , ) = (p, c,False)

= { definition of map and scanr }
(mapπ1 ◦map (⊕( , e, )) ◦map (⊕(reduce (≪) (scanr (⊕) (map f y))) ◦ scanr (⊕) ◦map f)x
++(map π1 ◦map (⊕( , e, )) ◦ scanr (⊕) ◦map f) y

= { definition of ⊕ }
(map π1 ◦map (⊕( , reduce (≪) y, )) ◦ scanr (⊕) ◦map f) x
++(map π1 ◦map (⊕( , e, )) ◦ scanr (⊕) ◦map f) y

= { definition of shift≪ and head }
shift≪ (head y) x++ shift≪ e y

Rule IV

tail (x++ y) = tail x++ y

Proof: It is shown by the following induction on y. Some where-clauses are omitted for
readability.
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The base case is shown as follows.

tail (x++ [a])
= { definition of tail and shift≪ }

(flatten ◦map π1 ◦map (⊕( , [ ], )) ◦ scanr (⊕) ◦map f ◦map [·]) (x++ [a])
where f a = (a, a,True)

( , c,True)⊕ ( , p, ) = (p, c,False)
(p, c,False)⊕ ( , , ) = (p, c,False)

= { definition of map }
(flatten ◦map π1 ◦map (⊕( , [ ], ))) (scanr (⊕) (map f (map [·] x)) ++ [([a], [a],True)])

= { definition of scan }
(flatten ◦mapπ1 ◦map (⊕( , [ ], ))) ((map (⊕([a], [a],True)) (scanr (⊕) (map f (map [·]x))))
++[([a], [a],True)])

= { ([a], [a],True)⊕ ( , [ ], ) = ([ ], [a],False) }
(flatten ◦map π1) ((map (⊕( , [a], )) (scanr (⊕) (map f (map [·] x)))) ++ [([ ], [a],False)])

= { definition of map and π1 }
(flatten ◦map π1) ((map (⊕( , [a], )) (scanr (⊕) (map f (map [·] x)))))

= { definition of shift≪, and rule II }
tail x++ [a]

The induction case is shown as follows.

tail (x++ (y ++ z))
= { associativity of ++, and induction hypothesis }

tail (x++ y) ++ z
= { induction hypothesis, and associativity of ++ }

tail x++ (y ++ z)

Rule V

[head x] ++ tail x = x

Proof: It is shown by the following induction on x.
The base case is shown as follows.

[head [a]] ++ tail [a]
= { definition of head and tail }

[a] ++ [ ]
= { the empty list }

[a]

The induction case is shown as follows.

[head (x++ y)] ++ tail (x++ y)
= { definition of head , and rule IV }

[head x] ++ tail x++ y
= { induction hypothesis }

x++ y

Rule VI

shift≪ e x = tail x++ [e]

Proof: It is shown by the following induction on x.
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shift≪ e x
= { rule I }

(flatten ◦ shift≪ [e] ◦map [·]) x
= { rule II }

((++[e]) ◦ flatten ◦ shift≪ [ ] ◦map [·]) x
= { definition of tail }

((++[e]) ◦ tail) x
= { function composition }

tail x++ [e]



Appendix D

Dilation of Rects

We will show the following dilation of rects ′.

rects ′ = pack ◦ rects
where pack = flatten ◦ unwind−◦ ◦map unwind − ◦

unwind⊕ |a| = |a|
unwind⊕ (|a| −◦ x) = |a| ⊕ reduce ( ,⊕) (map | · | x)
unwind⊕ ((|a| −◦ x)−◦ (NIL − ◦ y)) = unwind⊕ (|a| −◦ x)⊕ unwind⊕ y

We will first show the following dilation of TLs by induction. The result will be used in the
proof of the dilation of rects ′.

TLs = reduce ( ,−◦) ◦ toplefts

The base case is shown below.

TLs |a|
= { definition of TLs }
||a||

= { definition of reduce }
reduce ( ,−◦) |||a|||

= { definition of toplefts }
reduce ( ,−◦) (toplefts |a|)

The induction case of−◦ is as follows.

TLs (x−◦ y)
= { definition of TLs and scan }

TLs x−◦mapr (zipwith (−◦) (bottom (TLs x))) (TLs y)
=

{
induction hypothesis, and bottom ◦ TLs = right ′ ◦ toplefts

}

reduce ( ,−◦) (toplefts x)
−◦mapr (zipwith (−◦) (right ′ (reduce ( ,−◦) ( toplefts x)))) (reduce ( ,−◦) (toplefts y))

= { definition of reduce, and a row-wise map is changed to a simple map along }
reduce ( ,−◦) (toplefts x)
−◦map (zipwith (−◦) (right ′ (reduce ( ,−◦) ( toplefts x)))) (reduce ( ,−◦) (toplefts y))

= { definition of toplefts }
reduce ( ,−◦) (toplefts (x−◦ y))

The induction case of − ◦ is similarly shown.
Now, we proceed to the dilation of rects ′. We will show it by induction.
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The singleton case is shown below.

rects ′ |a|
= { definition of rects ′ }
|||a|||

= { definition of pack and unwind }
pack |||a|||

= { definition of rects }
pack (rects |a|)

Next, we will show the induction case of x − ◦ y. Here, we assume that width x = 1 for simplicity
of the proof. Note that we can impose this assumption safely because the properties of constructors
−◦ and − ◦ allow restructuring of the input to satisfy the assumption.

The left hand side is calculated as follows.

flatten (map TLs (BRs (x − ◦ y)))
= { definition of BRs }

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left (BRs y))) (BRs x) − ◦ BRs y))
= { definition of map and flatten }

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left (BRs y))) (BRs x)))

− ◦ flatten (map TLs (BRs y))

The right hand side is as follows. We will omit redundant where-clauses for readability.

pack (rects (x − ◦ y))
= { definition of pack and rects }

(flatten ◦ unwind−◦ ◦map unwind − ◦ ) (zipwith4 fs (rects x) (rects y) (rights x) (lefts y))
where fs s1 s2 r1 l2 = (s1 − ◦ gemm ( , − ◦) r1 l2)−◦ (NIL − ◦ s2)

= { rects x and rights x are singletons }
flatten (unwind−◦ (zipwith

4
f ′
s
(rects x) (rects y) (rights x) (lefts y))

where f ′
s
s1 s2 r1 l2 = (s1 − ◦ map (the r1 − ◦) l2) − ◦ unwind − ◦ s2)

= { split of zipwith
4
}

flatten (unwind−◦ (zipwith ( − ◦) (zipwith3 f ′′
s
(rects x) (rights x) (lefts y)))

(map unwind − ◦ (rects y)))
where f ′′

s
s1 r1 l2 = s1 − ◦ map (the r1 − ◦) l2)

= { swap of unwind − ◦ and zipwith }
flatten (zipwith ( − ◦) (unwind−◦ (zipwith

3
f ′′
s
(rects x) (rights x) (lefts y)))

(unwind−◦ (map unwind − ◦ (rects y)))
= { flatten (zipwith ( − ◦) X Y ) = flatten X − ◦ flatten Y when width X = 1 }

flatten (unwind−◦ (zipwith
3
f ′′
s
(rects x) (rights x) (lefts y)))

− ◦ flatten (unwind−◦ (map unwind − ◦ (rects y)))

Since we can use the induction hypothesis

flatten (map TLs (BRs y)) = flatten (unwind−◦ (map unwind − ◦ (rects y))),

the rest of the proof is to show the following equation.

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left (BRs y))) (BRs x)))
= flatten (unwind−◦ (zipwith

3
f ′′
s
(rects x) (rights x) (lefts y)))

where f ′′
s
s1 r1 l2 = s1 − ◦ map (the r1 − ◦) l2)

We will show this equation by induction on x.
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The base case (x = |a|) is shown as follows. Note that height y = 1 for the consistency.

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left (BRs y))) (BRs |a|)))
= { definition of BRs }

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left (BRs y))) ||a||))
= { left (BRs y) = y because height y = 1 }

flatten (map TLs (mapc (λt. zipwith ( − ◦) t y) ||a||))
= { definition of mapc }

flatten (map TLs ||a| −◦ y|)
= { definition of map and TLs }

flatten (|||a|| −◦ mapr (zipwith ( − ◦) |a|) (TLs y)|)
= { change of mapr to map from height (TLs y) = 1, and definition of flatten }
||a|| −◦ map (|a| −◦) (TLs y)

= { the dilation of TLs }
||a|| −◦ map (|a| −◦) (reduce ( ,−◦) (toplefts y))

= { toplefts y = lefts y when height y = 1 from definition of toplefts and lefts }
||a|| −◦ map (|a| −◦) (reduce ( ,−◦) (toplefts y))

= { reduce ( ,−◦) |a| = a = the a, and lefts y is a singleton }
||a|| −◦ map (|a| −◦) (reduce ( ,−◦) (lefts y))

= { definition of flatten and unwind }
flatten (unwind−◦ |||a|| −◦ map (|a| −◦) (reduce ( ,−◦) (lefts y))|)

= { definition of zipwith
3
and f ′′

s
}

flatten (unwind−◦ (zipwith
3
f ′′
s
|||a||| |||a||| (lefts y)))

where f ′′
s
s1 r1 l2 = s1 − ◦ map (the r1 − ◦) l2)

= { definition of rects and rights }
flatten (unwind−◦ (zipwith

3
f ′′
s
(rects |a|) (rights |a|) (lefts y)))

Then, we will show the induction case (x = |a|−◦ z). Note that we should assume that y = v−◦w
and width v = 1 for the consistency. Also, z and w should have the same width.

The right hand side is calculated as follows.

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left (BRs (v−◦ w)))) (BRs (|a|−◦ z))))
= { definition of BRs }

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left
(mapr (λt. zipwith (−◦) t (top (BRs w))) (BRs v)−◦ (BRs w))))
(mapr (λt. zipwith (−◦) t (top (BRs z))) (BRs |a|)−◦ (BRs z))))

= { simplification }
flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left
(mapr (λt. zipwith (−◦) t (top (BRs w))) (BRs v)−◦ (BRs w)))) ((||a|−◦ z|)−◦ (BRs z)))))

= { definition of left and mapr }
flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left
(mapr (λt. zipwith (−◦) t (top (BRs w))) (BRs v))−◦ left (BRs w))) ((||a|−◦ z|)−◦ (BRs z))))

= { split of mapc }
flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left
(mapr (λt. zipwith (−◦) t (top (BRs w))) (BRs v)))) (||a|−◦ z|)
−◦ (mapc (λt. zipwith ( − ◦) t (left (BRs w))) (BRs z))))

= { definition of map and flatten }
flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left
(mapr (λt. zipwith (−◦) t (top (BRs w))) (BRs v)))) (||a|−◦ z|)))
−◦ flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left (BRs w))) (BRs z)))
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The left hand size is as follows.

flatten (unwind−◦ (zipwith
3
f ′′
s
(rects (|a|−◦ z)) (rights (|a|−◦ z)) (lefts (v−◦ w))))

where f ′′
s
s1 r1 l2 = s1 − ◦ map (the r1 − ◦) l2)

= { definition of rects , rights, and lefts }
flatten (unwind−◦ (zipwith

3
f ′′
s
((|||a||| −◦ map (zipwith (−◦) ||a||) (tops z))−◦ (NIL − ◦ rects z))

((|||a||| −◦ map (zipwith (−◦) ||a||) (toprights z))−◦ (NIL − ◦ rights z))
((lefts v − ◦ gemm ( , zipwith (−◦)) (bottomlefts v) (toplefts w))−◦ (NIL − ◦ lefts w))))

= { definition of flatten, unwind , and zipwith
3
, and zipwith (−◦) ||a|| = map (|a|−◦) }

|f ′′
s
||a|| ||a|| (the (lefts v))|

−◦ flatten (reduce ( ,−◦) (map | · | (zipwith
3
f ′′
s
(map (map (|a|−◦)) (tops z))

(map (map (|a|−◦)) (toprights z)) (gemm ( , zipwith (−◦)) (bottomlefts v) (toplefts w)))))
−◦ flatten (unwind−◦ (zipwith

3
f ′′
s
(rects z) (rights z) (lefts w)))

The induction hypothesis guarantees the following equation of the last half parts of the results
of the above calculations.

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left (BRs w))) (BRs z)))
= flatten (unwind−◦ (zipwith

3
f ′′
s
(rects z) (rights z) (lefts w)))

The rest of the proof is to show the following equation.

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left
(mapr (λt. zipwith (−◦) t (top (BRs w))) (BRs v)))) (||a|−◦ z|)))
= |f ′′

s
||a|| ||a|| (the (lefts v))|

−◦ flatten (reduce ( ,−◦) (map | · | (zipwith
3
f ′′
s
(map (map (|a|−◦)) (tops z))

(map (map (|a|−◦)) (toprights z)) (gemm ( , zipwith (−◦)) (bottomlefts v) (toplefts w)))))

The left hand side is calculated follows.

flatten (map TLs (mapc (λt. zipwith ( − ◦) t (left
(mapr (λt. zipwith (−◦) t (top (BRs w))) (BRs v)))) (||a|−◦ z|)))

= { distribution of left }
flatten (map TLs (mapc (λt. zipwith ( − ◦) t (
mapr (λt. zipwith (−◦) t (left (top (BRs w))) (left (BRs v))))) (||a|−◦ z|)))

= { left (top (BRs w)) = |w|, and left (BRs v) = |v| }
flatten (map TLs (mapc (λt. zipwith ( − ◦) t (mapr (λt. zipwith (−◦) t |w|) |v|)) (||a|−◦ z|)))

= { simplification }
flatten (map TLs (|(|a|−◦ z) − ◦ (v−◦ w)|))

= TLs ((|a|−◦ z) − ◦ (v−◦ w))
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The right hand side is as follows.

|f ′′
s
||a|| ||a|| (the (lefts v))|

−◦ flatten (reduce ( ,−◦) (map | · | (zipwith
3
f ′′
s
(map (map (|a|−◦)) (tops z))

(map (map (|a|−◦)) (toprights z)) (gemm ( , zipwith (−◦)) (bottomlefts v) (toplefts w)))))
= { definition of f ′′

s
, and simplification }

||a|| −◦ map (|a| −◦) (the (lefts v))
−◦ flatten (reduce ( ,−◦) (map | · | (zipwith

3
f ′′
s
(map (map (|a|−◦)) (tops z))

(map (map (|a|−◦)) (toprights z)) (gemm ( , zipwith (−◦)) (bottomlefts v) (toplefts w)))))
= { flatten ◦ reduce ( ,−◦) ◦map | · | = reduce ( ,−◦) }
||a|| −◦ map (|a| −◦) (the (lefts v))
−◦ reduce ( ,−◦) (zipwith

3
f ′′
s
(map (map (|a|−◦)) (tops z))

(map (map (|a|−◦)) (toprights z)) (gemm ( , zipwith (−◦)) (bottomlefts v) (toplefts w)))
= { bottomlefts v is a singleton, and the definition of gemm }
||a|| −◦ map (|a| −◦) (the (lefts v))
−◦ reduce ( ,−◦) (zipwith

3
f ′′
s
(map (map (|a|−◦)) (tops z))

(map (map (|a|−◦)) (toprights z)) (map (zipwith (−◦)) (the (bottomlefts v)) (toplefts w)))
= { definition of reduce ( ,−◦) }

reduce ( ,−◦) (|||a|| −◦ map (|a| −◦) (the (lefts v))|

−◦ (zipwith3 f ′′
s
(map (map (|a|−◦)) (tops z))

(map (map (|a|−◦)) (toprights z)) (map (zipwith (−◦)) (the (bottomlefts v)) (toplefts w))))
= { equivalence under height v = 1 and width z = 1 }

reduce ( ,−◦) (|||a|| −◦ map (|a| −◦) (the (toplefts v))|

−◦ (zipwith3 f ′′
s
(map (map (|a|−◦)) (toplefts z))

(map (map (|a|−◦)) (toplefts z)) (map (zipwith (−◦)) (the (toplefts v)) (toplefts w))))
= { change of f ′′

s
to f ′

tl }
reduce ( ,−◦) (|||a|| −◦ map (|a| −◦) (the (toplefts v))|

−◦ (zipwith f ′

tl (map (map (|a|−◦)) (toplefts z))
(map (zipwith (−◦)) (the (toplefts v)) (toplefts w))))
where f ′

tl tl1 tl2 = tl1 − ◦ map (the tl1 − ◦) tl2)
=

{
right ′ |a| = the |a|, and map (|a|−◦) = zipwith (−◦) ||a||

}

reduce ( ,−◦) (ftl ||a|| (the (toplefts v))

− ◦ (zipwith ftl (map (zipwith (−◦) ||a||) (toplefts z))
(map (zipwith (−◦)) (the (toplefts v)) (toplefts w))))
where ftl tl1 tl2 = tl1 − ◦ map (right ′ tl1 − ◦) tl2)

= { definition of zipwith }
reduce ( ,−◦) (zipwith ftl (|||a||| −◦ map (zipwith (−◦) ||a||) (toplefts z))
(toplefts v − ◦ map (zipwith (−◦)) (the (toplefts v)) (toplefts w)))

= { definition of toplefts }
reduce ( ,−◦) (toplefts ((|a|−◦ z) − ◦ (v−◦ w)))

Since we have shown the dilation TLs = reduce ( ,−◦) ◦ toplefts, we have TLs ((|a|−◦ z) − ◦ (v−◦
w)) = reduce ( ,−◦) (toplefts ((|a|−◦ z) − ◦ (v−◦ w))). Therefore, we have shown the induction case
(x − ◦ y) of the dilation of rects ′.

The other induction case is shown similarly.
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